Difference between revisions of "File:Sunemplo4t.jpg"
($ -> \( ; refs ; pre ; keywords ; misprint) |
|||
| Line 1: | Line 1: | ||
| + | {{oq|Sunemplo4t.jpg|}} |
||
| ⚫ | |||
| + | Figure 13.5 from page 164 of book [[Superfunctions]] |
||
| ⚫ | |||
| + | <ref> |
||
| + | https://www.amazon.co.jp/-/en/Dmitrii-Kouznetsov/dp/6202672862 <br> |
||
| + | https://www.morebooks.de/shop-ui/shop/product/978-620-2-67286-3 <br> |
||
| + | https://mizugadro.mydns.jp/BOOK/468.pdf <br> |
||
| + | D.Kouznetov. [[Superfunctions]]. [[Lambert Academic Publishing]], 2020. |
||
| + | </ref>: |
||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| − | + | \(q\!=\!0\), (black) |
|
| − | + | \(q\!=\!0.5\), (pink) |
|
| − | + | \(q\!=\!1\), (red) |
|
| ⚫ | |||
| + | |||
| ⚫ | |||
==Description== |
==Description== |
||
| + | [[Nemtsov function]] is special 4th order polynomial: |
||
| ⚫ | |||
| + | |||
| − | <references/> |
||
| + | \(\mathrm{Nem}_q(z)=z+z^3+qz^4 \) |
||
| + | |||
| + | Here \(q\) is real parameter. |
||
| + | |||
| + | The [[Nemtsov function]] is treated as [[Transfer function]]; |
||
| + | |||
| + | the superfunction [[SuNem]] is solution \(\mathrm{SuNem}_q\) of equation |
||
| + | |||
| + | \(\mathrm{SuNem}_q(z\!+\!1) = \mathrm{Nem}_q\big(\mathrm{Nem}_q(z)\big) \) |
||
| + | |||
| + | This solution is constructed as the [[exotic iteration]] of the transfer function |
||
| + | at its [[fixed point]] zero. |
||
==[[C++]] generator of curves== |
==[[C++]] generator of curves== |
||
Files [[ado.cin]], [[conto.cin]], [[sune.cin]], [[sunema.txt]] should be loaded in order to compile the [[C++]] code below. |
Files [[ado.cin]], [[conto.cin]], [[sune.cin]], [[sunema.txt]] should be loaded in order to compile the [[C++]] code below. |
||
| + | <pre> |
||
| − | <poem><nomathjax><nowiki> |
||
#include <math.h> |
#include <math.h> |
||
#include <stdio.h> |
#include <stdio.h> |
||
| Line 160: | Line 181: | ||
return 0; |
return 0; |
||
} |
} |
||
| + | </pre> |
||
| − | </nowiki></nomathjax></poem> |
||
==[[Latex]] generator of curves== |
==[[Latex]] generator of curves== |
||
| + | <pre> |
||
| − | <poem><nomathjax><nowiki> |
||
\documentclass{mcom-l} |
\documentclass{mcom-l} |
||
% \documentclass[12pt]{article} |
% \documentclass[12pt]{article} |
||
| Line 208: | Line 229: | ||
\end{picture} |
\end{picture} |
||
\end{document} |
\end{document} |
||
| + | </pre> |
||
| − | </nowiki></nomathjax></poem> |
||
| ⚫ | |||
| + | {{ref}} |
||
| + | |||
| + | {{fer}} |
||
| + | ==Keywords== |
||
| + | «[[]]», |
||
| + | <b>«[[Nemtsov function]]»</b>, |
||
| + | <b>«[[SuNem]]»</b>, |
||
| + | «[[Superfunction]]», |
||
| + | «[[Superfunctions]]», |
||
[[Category:Book]] |
[[Category:Book]] |
||
Latest revision as of 22:37, 4 December 2025
Figure 13.5 from page 164 of book Superfunctions [1]:
Explicit plot of function SuNem for various values of parameter.
\(y=\mathrm{SuNem}_q(x)~ ~ \) versus \(x\) for
\(q\!=\!0\), (black)
\(q\!=\!0.5\), (pink)
\(q\!=\!1\), (red)
\(q\!=\!2\), (green)
\(q\!=\!3\), (blue)
Description
Nemtsov function is special 4th order polynomial:
\(\mathrm{Nem}_q(z)=z+z^3+qz^4 \)
Here \(q\) is real parameter.
The Nemtsov function is treated as Transfer function;
the superfunction SuNem is solution \(\mathrm{SuNem}_q\) of equation
\(\mathrm{SuNem}_q(z\!+\!1) = \mathrm{Nem}_q\big(\mathrm{Nem}_q(z)\big) \)
This solution is constructed as the exotic iteration of the transfer function at its fixed point zero.
C++ generator of curves
Files ado.cin, conto.cin, sune.cin, sunema.txt should be loaded in order to compile the C++ code below.
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
//using namespace std;
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
//#include "conto.cin"
#include "ado.cin"
#define M(x,y) fprintf(o,"%8.4lf %8.4lf M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%8.4lf %8.4lf L\n",0.+x,0.+y);
DB Q;
z_type nem(z_type z){ return z*(1.+z*z*(1.+z*Q)); }
z_type nem1(z_type z){ return 1.+z*z*(3.+z*(4.*Q)); } // WARNING: Q is global!
// DB Q=2.;
// z_type nem(z_type z){ return z*(1.+z*z*(1.+z*Q)); }
// z_type nem1(z_type z){ return 1.+z*z*(3.+z*(4.*Q)); } // WARNING: Q is global!
/*
DB K=Q*Q;
DB A[37][19];
int co(){
#include "sunema.txt"
return 0;}
z_type sun(z_type z){ z_type p[37],s; int m,M,n,N;
z_type L=log(-z);
z_type t=1./sqrt(-2.*z);
M=36;
//M=10;
for(m=2;m<M+1;m++){ N=m/2; s=A[m][N]*L; for(n=N-1;n>0;n--) { s+=A[m][n]; s*=L; }
p[m]=A[m][0]+s;
}
s=p[M]*t; for(m=M-1; m>1;m--) { s+=p[m]; s*=t;}
return t*( 1. + t* (-Q + s) );
}
z_type sune(z_type z){ int m,n; DB x,y; z_type s;
//DB R=20.+20.*Q*Q;
DB R=20.+20.*Q*Q;
x=Re(z); if(x<-R) return sun(z);
y=Im(z); if(fabs(y)>R) return sun(z);
n=int(x+R);
s=sun(z-(0.+n));
DO(m,n) s=nem(s);
return s;
}
*/
#include "sune.cin"
DB SUNo=0;
z_type sunem(z_type z){ return sune(z + SUNo);}
int main(){ int Max; int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
// DB rr,ti;
FILE *o;o=fopen("sunemplo4.eps","w");ado(o,420,1020);
fprintf(o,"210 10 translate\n 100 100 scale 2 setlinecap\n");
for(m=-2;m<3;m+=1){ M(m,0)L(m,10)}
for(n=0;n<11;n+=1){ M(-2,n)L(2,n)}
fprintf(o,".008 W 0 0 0 RGB 2 setlinecap S\n");
Q=0; K=Q*Q; x=0; co(); printf("Q=%9.4lf\n",Q);
DO(n,50) { y=Re(sunem(0)); SUNo-= y-1.; printf("%19.16lf %19.16lf\n", SUNo,y);} // getchar();
DO(n,402){ x=-2.01+.01*n; y=Re(sunem(x)); if(n==0) M(x,y) else L(x,y); printf("%6.1lf %18.15lf\n", x,y); if(y>10) break;}
fprintf(o,".02 W 0 0 0 RGB 1 setlinejoin S\n");
Q=.5; K=Q*Q; x=0; co(); printf("Q=%9.4lf\n",Q);
DO(n,50) { y=Re(sunem(0)); SUNo-= y-1.; printf("%19.16lf %19.16lf\n", SUNo,y);} // getchar();
DO(n,400){ x=-2.01+.01*n; y=Re(sunem(x)); if(n==0) M(x,y) else L(x,y); printf("%6.1lf %18.15lf\n", x,y); if(y>10) break;}
fprintf(o,".01 W .7 0 .6 RGB 1 setlinejoin S\n");
Q=1; K=Q*Q; x=0; co(); printf("Q=%9.4lf\n",Q);
DO(n,50) { y=Re(sunem(0)); SUNo-= y-1.; printf("%19.16lf %19.16lf\n", SUNo,y);} // getchar();
DO(n,400){ x=-2.01+.01*n; y=Re(sunem(x)); if(n==0) M(x,y) else L(x,y); printf("%6.1lf %18.15lf\n", x,y); if(y>10) break;}
fprintf(o,".02 W .8 .2 0 RGB 1 setlinejoin S\n");
Q=2; K=Q*Q; x=0; co(); printf("Q=%9.4lf\n",Q);
DO(n,50) { y=Re(sunem(0)); SUNo-= y-1.; printf("%19.16lf %19.16lf\n", SUNo,y);} // getchar();
DO(n,400){ x=-2.01+.01*n; y=Re(sunem(x)); if(n==0) M(x,y) else L(x,y); printf("%6.1lf %18.15lf\n", x,y); if(y>10) break;}
fprintf(o,".02 W 0 .6 0 RGB 1 setlinejoin S\n");
/*
Q=3; K=Q*Q; SUNo=-2.; co(); printf("Q=%9.4lf\n",Q);
DO(n,50) { y=Re(sunem(0)); SUNo-= y-1.; printf("%19.16lf %19.16lf\n", SUNo,y);} // getchar();
DO(n,40){ x=-2.01+.1*n; y=Re(sunem(x)); if(n==0) M(x,y) else L(x,y); printf("%6.1lf %18.15lf\n", x,y); if(y>10) break;}
fprintf(o,".02 W 0 0 .8 RGB 1 setlinejoin S\n");
Q=4; K=Q*Q; SUNo=-8.; co(); printf("Q=%9.4lf\n",Q);
DO(n,50) { y=Re(sunem(0)); SUNo-= y-1.; printf("%19.16lf %19.16lf\n", SUNo,y);} // getchar();
DO(n,40){ x=-2.01+.1*n; y=Re(sunem(x)); if(n==0) M(x,y) else L(x,y); printf("%6.1lf %18.15lf\n", x,y); if(y>10) break;}
fprintf(o,".02 W 0 0 .8 RGB 1 setlinejoin S\n");
Q=5; K=Q*Q; SUNo=-20.; co(); printf("Q=%9.4lf\n",Q);
DO(n,50) { y=Re(sunem(0)); SUNo-= y-1.; printf("%19.16lf %19.16lf\n", SUNo,y);} // getchar();
DO(n,40){ x=-2.01+.1*n; y=Re(sunem(x)); if(n==0) M(x,y) else L(x,y); printf("%6.1lf %18.15lf\n", x,y); if(y>10) break;}
fprintf(o,".02 W 0 0 .8 RGB 1 setlinejoin S\n");
Q=6; K=Q*Q; SUNo=-30.; co(); printf("Q=%9.4lf\n",Q);
DO(n,50) { y=Re(sunem(0)); SUNo-= y-1.; printf("%19.16lf %19.16lf\n", SUNo,y);} // getchar();
DO(n,40){ x=-2.01+.1*n; y=Re(sunem(x)); if(n==0) M(x,y) else L(x,y); printf("%6.1lf %18.15lf\n", x,y); if(y>10) break;}
fprintf(o,".02 W 0 0 .8 RGB 1 setlinejoin S\n");
Q=7; K=Q*Q; SUNo=-60.; co(); printf("Q=%9.4lf\n",Q);
DO(n,50) { y=Re(sunem(0)); SUNo-= y-1.; printf("%19.16lf %19.16lf\n", SUNo,y);} // getchar();
DO(n,40){ x=-2.01+.1*n; y=Re(sunem(x)); if(n==0) M(x,y) else L(x,y); printf("%6.1lf %18.15lf\n", x,y); if(y>10) break;}
fprintf(o,".02 W 0 0 .8 RGB 1 setlinejoin S\n");
*/
Q=8; K=Q*Q; SUNo=-100.; co(); printf("Q=%9.4lf\n",Q);
DO(n,50) { y=Re(sunem(0)); SUNo-= y-1.; printf("%19.16lf %19.16lf\n", SUNo,y);} // getchar();
DO(n,400){ x=-2.01+.01*n; y=Re(sunem(x)); if(n==0) M(x,y) else L(x,y); printf("%6.1lf %18.15lf\n", x,y); if(y>10) break;}
fprintf(o,".015 W 0 0 .8 RGB 1 setlinejoin S\n");
/*
Q=10; K=Q*Q; SUNo=-150.; co(); printf("Q=%9.4lf\n",Q);
DO(n,50) { y=Re(sunem(0)); SUNo-= y-1.; printf("%19.16lf %19.16lf\n", SUNo,y);} // getchar();
DO(n,400){ x=-2.01+.01*n; y=Re(sunem(x)); if(n==0) M(x,y) else L(x,y); printf("%6.1lf %18.15lf\n", x,y); if(y>10) break;}
fprintf(o,".015 W 0 0 .8 RGB 1 setlinejoin S\n");
*/
fprintf(o,"showpage\n%cTrailer",'%'); fclose(o);
system("epstopdf sunemplo4.eps");
system( "open sunemplo4.pdf"); //mac
return 0;
}
Latex generator of curves
\documentclass{mcom-l}
% \documentclass[12pt]{article}
\usepackage{graphics}
\paperwidth 408pt
\paperheight 1008pt
\usepackage{geometry}
\usepackage{rotating}
\textwidth 2560pt
\textheight 2260pt
\topmargin -98pt
\oddsidemargin -84pt
\parindent 0pt
\pagestyle{empty}
\newcommand \ing {\includegraphics}
\newcommand \sx {\scalebox}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\begin{document}
\begin{picture}(620,1020)
\put(4,0){\ing{sunemplo4}}
\put(224,1000){\sx{3.4}{$y$}}
\put(224,900){\sx{3.2}{$9$}}
\put(224,800){\sx{3.2}{$8$}}
\put(224,700){\sx{3.2}{$7$}}
\put(224,600){\sx{3.2}{$6$}}
\put(224,500){\sx{3.2}{$5$}}
\put(224,400){\sx{3.2}{$4$}}
\put(224,300){\sx{3.2}{$3$}}
\put(224,200){\sx{3.2}{$2$}}
\put(225, 99){\sx{3.2}{$1$}}
%\put(420, -7){\sx{3.3}{$0$}}
\put( 88,14){\sx{3.3}{$-1$}}
\put(207,14){\sx{3.3}{$0$}}
\put(308,14){\sx{3.3}{$1$}}
\put(398,14){\sx{3.4}{$x$}}
\put(322,932){\sx{3.4}{\rot{88}$q\!=\!8$\ero}}%
\put(348,834){\sx{3.4}{\rot{87}$q\!=\!2$\ero}}%
\put(361,734){\sx{3.4}{\rot{86}$q\!=\!1$\ero}}%
\put(372,614){\sx{3.4}{\rot{85}$q\!=\!0.5$\ero}}%
\put(392,518){\sx{3.4}{\rot{83}$q\!=\!0$\ero}}%
\end{picture}
\end{document}
References
Keywords
«[[]]», «Nemtsov function», «SuNem», «Superfunction», «Superfunctions»,
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 06:14, 1 December 2018 | 846 × 2,092 (203 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following 2 pages use this file: