Difference between revisions of "File:SuTraAsyQ2ateT.png"
m (→Keywords) |
|||
| Line 1: | Line 1: | ||
| − | == Summary == |
||
{{oq|SuTraAsyQ2ateT.png|Original file (644 × 1,235 pixels, file size: 28 KB, MIME type: image/png)|600}} |
{{oq|SuTraAsyQ2ateT.png|Original file (644 × 1,235 pixels, file size: 28 KB, MIME type: image/png)|600}} |
||
Revision as of 16:23, 4 February 2026
Atemptotic Asym (thick light blue curve) of function SuTra (pink curve) through the growing SuperExponential to base \(\sqrt{2}\).
Here, term Atemptotic means the Restrict asymptotic with natural ArcTetration \(\mathrm{ate}\) as the Criterion function.
\[ \mathrm{SuTra}(x)\ \underset{\overset{x\to +\infty}{x>0}}{{\overset{\mathrm{ate}}{\Large{\sim}}}} \ \mathrm{Asym}(x)= \mathrm{SuExp}_{\sqrt{2},4,5}(x\!+\!x_{\mathrm{stq2}}) \]
For this picture, the following approximation of the constant is used: \(x_{\mathrm{stq2}}\approx 1.219 \ \). In the code below, the corresponding variable is denoted with identifier "Shift".
Here, function \(\delta\) (Red curve at the right hand side, bottom) is arctetrational residual; it qualifies the precision of the atemptotic: \[ \delta(x)= \mathrm{ate}\Big(\mathrm{SuTra}(x)\Big)- \mathrm{ate}\Big(\mathrm{Asym}(x)\Big) \]
C++
/* subroutines ado.cin, Tania.cin, LambertW.cin, SuZex.cin, fslog.cin should be loaded in order to compile the source below.*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
using namespace std;
#include<complex>
typedef complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "Tania.cin" // need for LambertW
#include "LambertW.cin" // need for AuZex
#include "SuZex.cin"
#include "Sqrt2f45e.cin"
#include "Sqrt2f45l.cin"
#include "fslog.cin"
z_type tra(z_type z){ return exp(z)+z;}
z_type sutra(z_type z){ if( Re(z)<2. || fabs(Im(z))>2. ) return log(suzex(z));
return tra(sutra(z-1.));}
DB Shift=1.219;
z_type Asym(z_type z){ return F45E(z+Shift); }
#include "ado.cin"
#define M(x,y) fprintf(o,"%6.4f %6.4f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%6.4f %6.4f L\n",0.+x,0.+y);
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
FILE *o;o=fopen("SuTraAsyQ2ate.eps","w"); ado(o,622,1212); fprintf(o,"202 202 translate\n 100 100 scale 1 setlinejoin 2 setlinecap\n");
DO(m,411){x=-2.02+.02*m; y=Re(sutra(x)); if(m==0) M(x,y) else L(x,y) if(x>6.03||y>10) break;} fprintf(o,".06 W 1 0 1 RGB S\n");
DO(m,100){x=-2.01+.02*m; y=-log(-x); if(m==0) M(x,y) else L(x,y) if(x>6.03||y>10) break;} fprintf(o,".01 W 0 0 0 RGB S\n");
DO(m,720){x=-2.1+.01*m; z=sutra(x);
if(!(abs(z)<1.e32)) {
// printf("%lg %lg %lg\n",x,Re(z),Im(z));
break;
}
z=FSLOG(z); y=Re(z); //printf("%6.3lf %16.14lf \n",x,Re(z));
if(m==0) M(x,y) else L(x,y) if(x>4.4||y>10) break;
} fprintf(o,".06 W 0 1 0 RGB S\n");
DO(m,720){x=-2.1+.01*m; z=Asym(x);
if(!(abs(z)<1.e32)) { // printf("%lg %lg %lg\n",x,Re(z),Im(z));
break; }
// z=F45L(z); y=Re(z);
z=FSLOG(z); y=Re(z); //printf("%6.3lf %16.14lf \n",x,Re(z));
if(m==0) M(x,y) else L(x,y) if(x>4.4||y>10) break;
} fprintf(o,".04 W 0 0 1 RGB S\n");
DO(m,637){x=-2.1+.01*m; c=FSLOG(sutra(x)); d=FSLOG(Asym(x)); y=Re((c-d)); if(m==0) M(x,y) else L(x,y); }
fprintf(o,".03 W 1 0 0 RGB S\n");
DO(m,84){ x=-2.1+.1*m; z=Asym(x); y=Re(z); if(m==0) M(x,y) else L(x,y); if(y>10) break; } fprintf(o,".09 W 0 1 1 RGB S\n");
for(n=-2;n<11;n++) {M(-2,n)L(4,n)}
for(m=-2;m<5;m++) {M(m,-2)L(m,10)} M(0,1.+M_E) L(2,1.+M_E)
M(-1,-1.7)L(5,5-.7)fprintf(o,"0 0 0 RGB .004 W S\n");
M(0,-2.1)L(0,10.1)
M(-2.1,0)L(6.1,0) fprintf(o,".03 W S\n");
fprintf(o,"showpage\n"); fprintf(o,"%c%cTrailer\n",'%','%'); fclose(o);
system("epstopdf SuTraAsyQ2ate.eps");
system( "open SuTraAsyQ2ate.pdf"); //for macintosh
return 0;
Latex
\documentclass[12pr]{article}
\paperwidth 646pt
\paperheight 1240pt
\textwidth 800pt
\textheight 1700pt
\topmargin -96pt
\oddsidemargin -66pt
%\usepackage{xcolor}
\usepackage{graphicx}
\usepackage{rotating}
\newcommand \sx {\scalebox}
\newcommand \ing {\includegraphics}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\parindent 0pt
\begin{document}
\begin{picture}(720,1220)
%\put(-2,-6){\textcolor{white}{\rule{740pt}{740pt}}}
%\put(20,20){\ing{SuTraAsy3plot}}
%\put(20,20){\ing{SuTraAsyQplot}}
\put(20,20){\ing{SuTraAsyQ2ate}}
\put( 3,1206){\sx{3.2}{\(y\)}}
\put( 4,1116){\sx{3}{\(9\)}}
\put( 4,1016){\sx{3}{\(8\)}}
\put( 4,916){\sx{3}{\(7\)}}
\put( 4,816){\sx{3}{\(6\)}}
\put( 4,716){\sx{3}{\(5\)}}
\put( 4,616){\sx{3}{\(4\)}}
\put(240,585){\sx{4}{\(y\!=\!1\!+\!\mathrm e\)}}
\put( 4,516){\sx{3}{\(3\)}}
\put( 4,416){\sx{3}{\(2\)}}
\put( 4,316){\sx{3}{\(1\)}}
\put( 4,216){\sx{3}{\(0\)}}
\put(-6,114){\sx{2.4}{\(-\!1\)}}
\put(-6,14){\sx{2.4}{\(-\!2\)}}
\put(0,-6){\sx{2.8}{\(-2\)}}
\put(102,-5){\sx{2.9}{\(-1\)}}
\put(216,-5){\sx{3}{\(0\)}}
\put(316,-5){\sx{3}{\(1\)}}
\put(416,-5){\sx{3}{\(2\)}}
\put(516,-5){\sx{3}{\(3\)}}
\put(606,-4){\sx{3.6}{\(x\)}}
%\put(190,356){\sx{3}{\rot{83}\(y\!=\!-\ln(-x)\)\ero}}
\put(68,188){\sx{3}{\rot{48}\(y\!=\!-\ln(-x)\)\ero}}
\put(330,886){\sx{4.5}{\rot{73}\(y\!=\!\mathrm{Asym}(x)\)\ero}}
\put(455,980){\sx{4.4}{\rot{86}\(y\!=\!\mathrm{SuTra}(x)\)\ero}}
\put(170,360){\sx{4.4}{\rot{13}\(y\!=\!\mathrm{ate}\!\big(\mathrm{Asym}(x)\big)\)\ero}}
%\put(488,728){\sx{5}{\rot{85}\(y\!=\!\mathrm{SuTra}(x)\)\ero}}
%\put(24,119){\sx{3}{\rot{22}\(y\!=\!\mathrm{SuTra}(x)\)\ero}}
%\put(488,633){\sx{3.4}{\rot{44}\(y=x\!+\!x_{\mathrm{ste2}}\)\ero}}
\put(270,208){\sx{3.4}{\rot{44}\(y=x\!+\!0.7\)\ero}}
\put(298,160){\sx{4}{\rot{47}\(y\!=\!\mathrm{ate}\!\big(\mathrm{SuTra}(x)\big)\)\ero}}
%\put(440,56){\sx{4}{\rot{84}\(y\!=\!\mathrm{AuExp_{\sqrt{2},4,5}}\big(\mathrm{SuTra}(x)\big)\)\ero}}
%\put(528,62){\sx{3}{\rot{70}\(y=10 \ \delta(x)\)\ero}}
\put(396,125){\sx{4.4}{\rot{28}\(y\!=\!\delta(x)\)\ero}}
\end{picture}
\end{document}
References
Keywords
«Abelfunction», «Approximation», «Arctetral asymptotic», «Asymptotic», «Atemptotic», «Base sqrt2», «Logarithmic asymptotic», «SuperExponential», «Superfunction», «Superfunctions», «SuTra», «Trappmann function»,
Суперфункции]]»,
«ado.cin», «Tania.cin», «LambertW.cin», «SuZex.cin», «Sqrt2f45e.cin», «Sqrt2f45l.cin»
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 09:41, 5 February 2026 | 644 × 1,235 (28 KB) | T (talk | contribs) | misprint, there was wrong sign in formula y=x-0.7 | |
| 16:13, 4 February 2026 | 644 × 1,235 (28 KB) | T (talk | contribs) | {{oq|SuTraAsyQ2ateT.png|Original file (644 × 1,235 pixels, file size: 28 KB, MIME type: image/png)|600}} Atemptotic Asym (thick light blue curve) of function SuTra (pink curve) through the growing SuperExponential to base \(\sqrt{2}\). Here, term Atemptotic means the Restrict asymptotic with natural ArcTetration \(\mathrm{ate}\) as the Criterion function. \[ \mathrm{SuTra}(x)\ \underset{\overset{x\to +\infty}{x>0}}{{\overset{\mathrm{ate}}{\Larg... |
You cannot overwrite this file.
File usage
The following page uses this file: