File:Exm05mapT200.jpg

From TORI
Revision as of 12:12, 28 July 2013 by T (talk | contribs) (T uploaded a new version of "File:Exm05mapT200.jpg": shift)
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Original file(2,281 × 1,179 pixels, file size: 705 KB, MIME type: image/jpeg)

Complex map of the $-0.5$th iteration of exponent,

$u+\mathrm i v= \exp^{-0.5}(x+\mathrm i y)=\ln^{0.5}(x+\mathrm i y)= \mathrm{tet}(-0.5+\mathrm{ate}(x+\mathrm i y))$

For the evaluation, the non-integer iterate of exponential is expressed through tetration tet and arctetration ate. The complex double implementations FSEXP and FSLOG are used in the C++ code below.

C++ generator of curves

// Files ado.cin, conto.cin, fsexp.cin and fslog.cin should be loaded in the working directory in order to compile the code below.

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
using namespace std;
#include<complex>
typedef complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
#include "fsexp.cin"
#include "fslog.cin"
main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
int M=401,M1=M+1;
int N=403,N1=N+1;
DB X[M1],Y[N1];
DB *g, *f, *w; // w is working array.
g=(DB *)malloc((size_t)((M1*N1)*sizeof(DB)));
f=(DB *)malloc((size_t)((M1*N1)*sizeof(DB)));
w=(DB *)malloc((size_t)((M1*N1)*sizeof(DB)));
char v[M1*N1]; // v is working array
FILE *o;o=fopen("exm05map.eps","w"); ado(o,802,402);
fprintf(o,"401 1 translate\n 100 100 scale\n");
fprintf(o,"1 setlinejoin 2 setlinecap\n");
DO(m,M1) X[m]=-4+.02*(m-.5);
DO(n,N1) { y=0.+.01*(n-.5); if(y>Im(Zo)) break; Y[n]=y; }
Y[n]  =Im(Zo)-.00001;
Y[n+1]=Im(Zo)+.00001;
for(m=n+2;m<N1;m++) Y[m]=.01*(m-2-.5);
for(m=-4;m<5;m++){M(m,0) L(m,4)  }
for(n=0;n<5;n++){M(  -4,n) L(4,n)}
 fprintf(o,".006 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){      g[m*N1+n]=999; f[m*N1+n]=999;}
DO(m,M1){x=X[m]; if(m/10*10==m) printf("x=%6.3f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y); //if(abs(z+2.)>.019)
c=FSEXP(-.5+FSLOG(z));
 p=Re(c); q=Im(c);// if(p>-19 && p<19 && ( x<2. ||  fabs(q)>1.e-12 && fabs(p)>1.e-12) )
                  { g[m*N1+n]=p;f[m*N1+n]=q;}
       }}
fprintf(o,"1 setlinejoin 1 setlinecap\n");   p=2.;q=1;
conto(o,g,w,v,X,Y,M,N, Re(Zo),-p,p);fprintf(o,".03 W 0 1 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, Im(Zo),-p,p);fprintf(o,".03 W 0 1 0 RGB S\n");
for(m=-8;m<8;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q,q);fprintf(o,".007 W 0 .6 0 RGB S\n");
for(m=0;m<8;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q,q);fprintf(o,".007 W .9 0 0 RGB S\n");
for(m=0;m<8;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q,q);fprintf(o,".007 W 0 0 .9 RGB S\n");
for(m= 1;m<17;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-q,q);fprintf(o,".02 W .8 0 0 RGB S\n");
for(m= 1;m<17;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-q,q);fprintf(o,".02 W 0 0 .8 RGB S\n");
               conto(o,f,w,v,X,Y,M,N, (0.  ),-p,p); fprintf(o,".02 W .5 0 .5 RGB S\n");
for(m=-16;m<17;m++)conto(o,g,w,v,X,Y,M,N,(0.+m),-q,q);fprintf(o,".02 W 0 0 0 RGB S\n");
fprintf(o,"0 setlinejoin 0 setlinecap\n");
M(Re(Zo),Im(Zo))L(-4,Im(Zo)) fprintf(o,"1 1 1 RGB .022 W S\n");
DO(n,40){M(Re(Zo)-.2*n,Im(Zo))L(Re(Zo)-.2*(n+.4),Im(Zo)) }
 fprintf(o,"0 0 0 RGB .032 W S\n");
DO(n,17) {M(-4+.2*n , 0) L(-4+.2*(n+.4),0) }
fprintf(o,"0 0 0 RGB .032 W S\n");
fprintf(o,"showpage\n");
fprintf(o,"%c%cTrailer\n",'%','%');
fclose(o);  free(f); free(g); free(w);
      system("epstopdf exm05map.eps"); 
      system(    "open exm05map.pdf"); //for macintosh
      getchar(); system("killall Preview"); // For macintosh
}

Latex generator of labels

%


\documentclass[12pt]{article}
\usepackage{geometry}
\paperwidth 824pt
\paperheight 426pt
\usepackage{graphics}
\usepackage{rotating}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\textwidth 810pt
\topmargin -105pt
\oddsidemargin -72pt
\pagestyle{empty}
\parindent 0pt
\newcommand \sx {\scalebox}
\begin{document}
\begin{picture}(820,420)
\put(20,20){\includegraphics{exm05map}}
\put(4,412){\sx{2.2}{$y$}}
\put(4,313){\sx{2.2}{$3$}}
\put(4,213){\sx{2.2}{$2$}}
\put(4,113){\sx{2.2}{$1$}}
\put(4,16){\sx{2.2}{$0$}}
\put(2,0){\sx{2.2}{$-4$}}
\put(100,0){\sx{2.2}{$-3$}}
\put(200,0){\sx{2.2}{$-2$}}
\put(300,0){\sx{2.2}{$-1$}}
\put(420,0){\sx{2.2}{$0$}}
\put(520,0){\sx{2.2}{$1$}}
\put(620,0){\sx{2.2}{$2$}}
\put(720,0){\sx{2.2}{$3$}}
\put(810,0){\sx{2.2}{$x$}}
%\put(140,329){\sx{2.4}{$v\!=\!0$}}
%
\put(118,295){\sx{2.5}{\rot{-8} $u\!=\!\Re(L)$ \ero}}
\put(120,235){\sx{2.5}{\rot{-4} $u\!=\!0$ \ero}}
\put(120,198){\sx{2.5}{\rot{-2} $u\!=\!-0.2$ \ero}}
\put(120,166){\sx{2.5}{\rot{-1} $u\!=\!-0.4$ \ero}}
%
\put(580,230){\sx{2.5}{\rot{ 29} $v\!=\!\Im(L)$ \ero}}
\put(600,212){\sx{2.5}{\rot{ 25} $v\!=\!1.2$ \ero}}
\put(616,182){\sx{2.5}{\rot{ 22} $v\!=\!1$ \ero}}
%
\put(86,330){\sx{2.6}{\rot{87} $v\!=\!4$ \ero}}
\put(282,319){\sx{2.5}{\rot{ 69} $v\!=\!3$ \ero}}
\put(520,341){\sx{2.5}{\rot{ 44} $v\!=\!2$ \ero}}
\put(650,49){\sx{2.5}{\rot{ 3} $v\!=\!0.2$ \ero}}
\put(650,14){\sx{2.5}{\rot{-.02} $v\!=\!0$ \ero}}
%
\put(28,90){\sx{2.4}{\rot{28} $u\!=\!-0.4$ \ero}}
\put(140,115){\sx{2.5}{\rot{-51} $v\!=\!3$ \ero}}
%
\put(263,46){\sx{2.5}{\rot{28} $u\!=\!-1$ \ero}}
\put(447,98){\sx{2.5}{\rot{-72} $u\!=\!0$ \ero}}
\put(574,100){\sx{2.5}{\rot{-84} $u\!=\!1$ \ero}}
\put(756,100){\sx{2.5}{\rot{-87} $u\!=\!2$ \ero}}
%
\put(53,150){\sx{2.6}{\bf cut}}
\put(44,14){\sx{2.6}{\bf cut}}
\end{picture}
\end{document}
%

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current12:54, 28 July 2013Thumbnail for version as of 12:54, 28 July 20132,281 × 1,179 (705 KB)T (talk | contribs)resolution
12:12, 28 July 2013Thumbnail for version as of 12:12, 28 July 20131,711 × 885 (479 KB)T (talk | contribs)shift
23:46, 27 July 2013Thumbnail for version as of 23:46, 27 July 20132,281 × 1,179 (704 KB)T (talk | contribs)Compex map of the $-0.5$th iteration of exponent, $u+\mathrm i v= \exp^{-0.5}(x+\mathrm i y)=\ln^{0.5}(x+\mathrm i y)= \mathrm{tet}(-0.5+\mathrm{ate}(x+\mathrm i y)$ For the evaluation, the non-integer iterate of exponential is expressed thr...

The following page uses this file:

Metadata