Difference between revisions of "File:Boyt100.jpg"

From TORI
Jump to navigation Jump to search
(Importing image file)
 
 
Line 1: Line 1:
  +
Approximation of the shape of the sledge runner by
Importing image file
 
  +
<ref>
  +
http://en.wikipedia.org/wiki/File:Boy_on_snow_sled,_1945.jpg Father of JGKlein. Boy on snow sled, 1945.
  +
</ref>
  +
with the hundredth iteration of [[sin]]
  +
<ref>http://mizugadro.mydns.jp/PAPERS/2014susin.pdf Dmitrii Kouznetsov. Super sin. December 17, 2013. Iterates of function sin are considered. The superfunction SuSin is constructed as holomorphic solution of the transfer equation sin(SuSin(z))=SuSin(z+1). The Abel function AuSin is constructed as solution of the Abel equation AuSin(sin(z))=AuSin(z)+1; in wide range of values z, the rela- tion SuSin(AuSin(z))=z holds. Iteration of sin is expressed with sinˆn(z)=SuSin(n+AuSin(z)), where the number n of iteration has no need to be integer. ..
  +
</ref>;
  +
  +
Approximation of the shape of the sledge runner by
  +
<ref>
  +
http://en.wikipedia.org/wiki/File:Boy_on_snow_sled,_1945.jpg Father of JGKlein. Boy on snow sled, 1945.
  +
</ref>
  +
with the hundredth iteration of [[sin]]
  +
<ref>http://mizugadro.mydns.jp/PAPERS/2014susin.pdf Dmitrii Kouznetsov. Super sin. December 17, 2013. Iterates of function sin are considered. The superfunction SuSin is constructed as holomorphic solution of the transfer equation sin(SuSin(z))=SuSin(z+1). The Abel function AuSin is constructed as solution of the Abel equation AuSin(sin(z))=AuSin(z)+1; in wide range of values z, the rela- tion SuSin(AuSin(z))=z holds. Iteration of sin is expressed with sinˆn(z)=SuSin(n+AuSin(z)), where the number n of iteration has no need to be integer. ..
  +
</ref>;
  +
  +
$y=\sin^n(\pi/2)-\sin^n(x)$
  +
  +
with single adjusting parameter $n\!=\!100$.
  +
Super sin and the Abel sin functions, id est, [[SuSin]] and [[AuSin]], can be used to evaluate the iteration of [[sin]];
  +
then, the number $n$ of iterate has no need to be integer.
  +
  +
This is improved version of image http://mizugadro.mydns.jp/t/index.php/File:Boyt.jpg
  +
the resolution of the image of the sledge is better, and the file is half shorter.
  +
  +
==C++ generator of curve==
  +
<poem><nomathjax><nowiki>
  +
#include <math.h>
  +
#include <stdio.h>
  +
#include <stdlib.h>
  +
#define DB double
  +
#define DO(x,y) for(x=0;x<y;x++)
  +
using namespace std;
  +
#include<complex>
  +
typedef complex<double> z_type;
  +
#define Re(x) x.real()
  +
#define Im(x) x.imag()
  +
#define I z_type(0.,1.)
  +
  +
#include "ado.cin"
  +
#include "arcsin.cin"
  +
#include "susin.cin"
  +
#include "ausin.cin"
  +
  +
DB sinni(int n, DB x){ DB s=x; int m; DO(m,n)s=sin(s); return s;}
  +
  +
z_type sinn(z_type n, z_type z){return susin(n+ausin(z));}
  +
  +
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
  +
  +
FILE *o;o=fopen("boy.eps","w"); ado(o,318,30);
  +
#define M(x,y) {fprintf(o,"%6.4f %6.4f M\n",0.+x,0.+y);}
  +
#define L(x,y) {fprintf(o,"%6.4f %6.4f L\n",0.+x,0.+y);}
  +
  +
fprintf(o,"1 1 translate\n 100 100 scale\n");
  +
fprintf(o,"1 setlinejoin 2 setlinecap\n");
  +
for(m=0;m<4;m++){M(m,0) L(m,.2) }
  +
for(n=0;n<3;n++){M( 0,.1*n) L(M_PI,.1*n)}
  +
fprintf(o,".004 W 0 0 0 RGB S\n");
  +
M(M_PI/2.,0); L(M_PI/2.,.2)
  +
M(M_PI,0); L(M_PI,.2)
  +
fprintf(o,".003 W 0 0 0 RGB S\n");
  +
  +
n=100;
  +
p=sinni(100,M_PI/2);
  +
  +
M(0,p) DO(m,315){x=.01*(m+.1);y=sin(x); y=p-sinni(100,x); L(x,y); } fprintf(o,".01 W 0 1 0 RGB S\n");
  +
  +
fprintf(o,"showpage\n");
  +
fprintf(o,"%c%cTrailer\n",'%','%');
  +
fclose(o);
  +
system("epstopdf boy.eps");
  +
system( "open boy.pdf"); //for macintosh
  +
getchar(); system("killall Preview"); // For macintosh
  +
}
  +
</nowiki></nomathjax></poem>
  +
  +
==Latex generator of labels==
  +
File http://en.wikipedia.org/wiki/File:Boy_on_snow_sled,_1945.jpg should be loaded to the working directory in order to compile the [[Latex]] document below]]
  +
  +
<poem><nomathjax><nowiki>
  +
\documentclass[12pt]{article}
  +
\usepackage{geometry}
  +
\usepackage{graphics}
  +
\usepackage{rotating}
  +
\usepackage{color}
  +
%\paperwidth 3230pt
  +
%\paperheight 1700pt
  +
\paperwidth 2510pt
  +
\paperheight 1190pt
  +
\topmargin -100pt
  +
\oddsidemargin -92pt
  +
\textwidth 3200pt
  +
\textheight 1700pt
  +
\newcommand \sx {\scalebox}
  +
\newcommand \rot {\begin{rotate}}
  +
\newcommand \ero {\end{rotate}}
  +
\pagestyle{empty}
  +
\begin{document}
  +
\parindent 0pt
  +
%\sx{10}{\begin{picture}(248,120)
  +
\sx{10}{\begin{picture}(285,136)
  +
%\put(4,9){\includegraphics{sinplo1}}
  +
\put(0,15.9){\sx{1.76}{\rot{1}\includegraphics{Boy_on_snow_sled,_1945}\ero}}
  +
%\put(-16,0){\rot{1}\sx{.14}{\includegraphics{boy05}}\ero}
  +
%\put(0,0){\color{red} \rule{10pt}{100pt}}
  +
%\put(0,0){\rot{1}\color{magenta} \rule{15pt}{132pt}\ero}
  +
%\put(10,10){\rot{1}\color{yellow} \rule{215pt}{18pt}\ero}
  +
%\put(210,0){\rot{1}\color{red} \rule{215pt}{138pt}\ero}
  +
\put(.5,0){\rot{1}\color{white} \rule{5pt}{152pt}\ero}
  +
\put(0,6){\rot{1}\color{white} \rule{225pt}{18pt}\ero}
  +
\put(222,0){\rot{1}\color{white} \rule{215pt}{148pt}\ero}
  +
%\put(14,9){\includegraphics{boy}}
  +
\put(36,29){\includegraphics{boy}} % Curves by C++
  +
%\put(3,28){\sx{1.}{$y$}}
  +
\put(25,48){\sx{1.}{$y$}}
  +
\put(22,36){\sx{1.}{$0.1$}}
  +
\put(22, 26){\sx{1.}{$0$}}
  +
%\put(-7, 06){\sx{1.2}{$-2$}}
  +
\put(35,20){\sx{1.}{$0$}}
  +
\put(135,20){\sx{1.}{$1$}}
  +
\put(185,19){\sx{1.}{$\pi/2$}}
  +
\put(235,20){\sx{1.}{$2$}}
  +
%\put(313,0){\sx{1.}{$3$}}
  +
\put(246,20){\sx{1.}{$x$}}
  +
\end{picture}}
  +
\end{document}
  +
</nowiki></nomathjax></poem>
  +
  +
==References==
  +
<references/>
  +
  +
[[Category:Book]]
  +
[[Category:BookPlot]]
  +
[[Category:Esplicit plot]]
  +
[[Category:Snow]]
  +
[[Category:Sled]]
  +
[[Category:Sin]]
  +
[[Category:SuSin]]
  +
[[Category:Iterate]]

Latest revision as of 08:31, 1 December 2018

Approximation of the shape of the sledge runner by [1] with the hundredth iteration of sin [2];

Approximation of the shape of the sledge runner by [3] with the hundredth iteration of sin [4];

$y=\sin^n(\pi/2)-\sin^n(x)$

with single adjusting parameter $n\!=\!100$. Super sin and the Abel sin functions, id est, SuSin and AuSin, can be used to evaluate the iteration of sin; then, the number $n$ of iterate has no need to be integer.

This is improved version of image http://mizugadro.mydns.jp/t/index.php/File:Boyt.jpg the resolution of the image of the sledge is better, and the file is half shorter.

C++ generator of curve


#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
using namespace std;
#include<complex>
typedef complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)

#include "ado.cin"
#include "arcsin.cin"
#include "susin.cin"
#include "ausin.cin"

DB sinni(int n, DB x){ DB s=x; int m; DO(m,n)s=sin(s); return s;}

z_type sinn(z_type n, z_type z){return susin(n+ausin(z));}

int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;

FILE *o;o=fopen("boy.eps","w"); ado(o,318,30);
#define M(x,y) {fprintf(o,"%6.4f %6.4f M\n",0.+x,0.+y);}
#define L(x,y) {fprintf(o,"%6.4f %6.4f L\n",0.+x,0.+y);}

fprintf(o,"1 1 translate\n 100 100 scale\n");
fprintf(o,"1 setlinejoin 2 setlinecap\n");
for(m=0;m<4;m++){M(m,0) L(m,.2) }
for(n=0;n<3;n++){M( 0,.1*n) L(M_PI,.1*n)}
fprintf(o,".004 W 0 0 0 RGB S\n");
M(M_PI/2.,0); L(M_PI/2.,.2)
M(M_PI,0); L(M_PI,.2)
fprintf(o,".003 W 0 0 0 RGB S\n");

n=100;
p=sinni(100,M_PI/2);

M(0,p) DO(m,315){x=.01*(m+.1);y=sin(x); y=p-sinni(100,x); L(x,y); } fprintf(o,".01 W 0 1 0 RGB S\n");

fprintf(o,"showpage\n");
fprintf(o,"%c%cTrailer\n",'%','%');
fclose(o);
      system("epstopdf boy.eps");
      system( "open boy.pdf"); //for macintosh
      getchar(); system("killall Preview"); // For macintosh
}

Latex generator of labels

File http://en.wikipedia.org/wiki/File:Boy_on_snow_sled,_1945.jpg should be loaded to the working directory in order to compile the Latex document below]]


\documentclass[12pt]{article}
\usepackage{geometry}
\usepackage{graphics}
\usepackage{rotating}
\usepackage{color}
%\paperwidth 3230pt
%\paperheight 1700pt
\paperwidth 2510pt
\paperheight 1190pt
\topmargin -100pt
\oddsidemargin -92pt
\textwidth 3200pt
\textheight 1700pt
\newcommand \sx {\scalebox}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\pagestyle{empty}
\begin{document}
\parindent 0pt
%\sx{10}{\begin{picture}(248,120)
\sx{10}{\begin{picture}(285,136)
%\put(4,9){\includegraphics{sinplo1}}
\put(0,15.9){\sx{1.76}{\rot{1}\includegraphics{Boy_on_snow_sled,_1945}\ero}}
%\put(-16,0){\rot{1}\sx{.14}{\includegraphics{boy05}}\ero}
%\put(0,0){\color{red} \rule{10pt}{100pt}}
%\put(0,0){\rot{1}\color{magenta} \rule{15pt}{132pt}\ero}
%\put(10,10){\rot{1}\color{yellow} \rule{215pt}{18pt}\ero}
%\put(210,0){\rot{1}\color{red} \rule{215pt}{138pt}\ero}
\put(.5,0){\rot{1}\color{white} \rule{5pt}{152pt}\ero}
\put(0,6){\rot{1}\color{white} \rule{225pt}{18pt}\ero}
\put(222,0){\rot{1}\color{white} \rule{215pt}{148pt}\ero}
%\put(14,9){\includegraphics{boy}}
\put(36,29){\includegraphics{boy}} % Curves by C++
%\put(3,28){\sx{1.}{$y$}}
\put(25,48){\sx{1.}{$y$}}
\put(22,36){\sx{1.}{$0.1$}}
\put(22, 26){\sx{1.}{$0$}}
%\put(-7, 06){\sx{1.2}{$-2$}}
\put(35,20){\sx{1.}{$0$}}
\put(135,20){\sx{1.}{$1$}}
\put(185,19){\sx{1.}{$\pi/2$}}
\put(235,20){\sx{1.}{$2$}}
%\put(313,0){\sx{1.}{$3$}}
\put(246,20){\sx{1.}{$x$}}
\end{picture}}
\end{document}

References

  1. http://en.wikipedia.org/wiki/File:Boy_on_snow_sled,_1945.jpg Father of JGKlein. Boy on snow sled, 1945.
  2. http://mizugadro.mydns.jp/PAPERS/2014susin.pdf Dmitrii Kouznetsov. Super sin. December 17, 2013. Iterates of function sin are considered. The superfunction SuSin is constructed as holomorphic solution of the transfer equation sin(SuSin(z))=SuSin(z+1). The Abel function AuSin is constructed as solution of the Abel equation AuSin(sin(z))=AuSin(z)+1; in wide range of values z, the rela- tion SuSin(AuSin(z))=z holds. Iteration of sin is expressed with sinˆn(z)=SuSin(n+AuSin(z)), where the number n of iteration has no need to be integer. ..
  3. http://en.wikipedia.org/wiki/File:Boy_on_snow_sled,_1945.jpg Father of JGKlein. Boy on snow sled, 1945.
  4. http://mizugadro.mydns.jp/PAPERS/2014susin.pdf Dmitrii Kouznetsov. Super sin. December 17, 2013. Iterates of function sin are considered. The superfunction SuSin is constructed as holomorphic solution of the transfer equation sin(SuSin(z))=SuSin(z+1). The Abel function AuSin is constructed as solution of the Abel equation AuSin(sin(z))=AuSin(z)+1; in wide range of values z, the rela- tion SuSin(AuSin(z))=z holds. Iteration of sin is expressed with sinˆn(z)=SuSin(n+AuSin(z)), where the number n of iteration has no need to be integer. ..

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current06:10, 1 December 2018Thumbnail for version as of 06:10, 1 December 20183,473 × 1,646 (467 KB)Maintenance script (talk | contribs)Importing image file

The following page uses this file:

Metadata