Difference between revisions of "File:Norifit76fragment.jpg"
(Importing image file) |
|||
Line 1: | Line 1: | ||
+ | Fragment from image http://mizugadro.mydns.jp/t/index.php/File:Norifit76plot.jpg |
||
− | Importing image file |
||
+ | |||
+ | Analysis of the approximation of [[nori function]] through function [[korifit76]], |
||
+ | |||
+ | [[nori]]$(x)=\, $[[kori]]$(x)^2\approx\, $[[korifit76]]$(x)^2$ |
||
+ | |||
+ | The free agreements are shown: |
||
+ | |||
+ | $\mathrm{A}(x)= - \lg\! \Big( \big|\mathrm{korifit76}(x)^2-\mathrm{nori}(x)\big|\Big)$ |
||
+ | |||
+ | $\mathrm{B}(x)= - \lg\! \Big( \big|\mathrm{korifit76}(x)-\mathrm{kori}(x)\big| \Big)$ |
||
+ | |||
+ | $\displaystyle |
||
+ | \mathrm{C}(x)= - \lg \left(\frac {\big|\mathrm{korifit76}(x)-\mathrm{kori}(x)\big|}{\big|\mathrm{korifit76}(x)\big| + \big|\mathrm{kori}(x)\big|}\,\right)$ |
||
+ | |||
+ | where functions nori and kori are evaluated through the straightforward definitions using the [[C++]] built-in [[Bessel function]] double [[j0]](double ). |
||
+ | |||
+ | [[kori]]$(x) =\,$[[mori]]$\big(\sqrt{x}\big)$ $\,= \displaystyle \frac{ J_0\big(L_1 \sqrt{x} \big)}{1-x}$ |
||
+ | |||
+ | where $L_n =\,$[[BesselJZero]]$[0,n]~$ is $n$th zero of function [[BesselJ0]]. |
||
+ | |||
+ | For reference, at the bottom, functions [[nori]] and [[kori]], scaled with factor 10, are shown with green and red curves. |
||
+ | |||
+ | The additional vertical grid lines show abscissas |
||
+ | $\displaystyle |
||
+ | M_n=\left(\frac{L_n}{L_1}\right)^2~ $ for $~n=2\,..\,5$ |
||
+ | |||
+ | ==[[korifit76]]== |
||
+ | |||
+ | Function [[korifit76]] is defined in the following way: |
||
+ | |||
+ | $\mathrm{kori76fit}= \displaystyle |
||
+ | \prod_{n=2}^7\! \left(1-\frac{L_1^2}{L_n^2}x\right)~ \frac{1+\sum_{n=1}^6 a_n x^n}{1+\sum_{n=1}^6 b_n x^n} |
||
+ | $ |
||
+ | |||
+ | where $L_n=\mathrm{BesselJZero}[0,n]$ and coefficients $a$ and $b$ are: |
||
+ | |||
+ | $\begin{array}{l} |
||
+ | a_1=-0.04844698269548584 \\ |
||
+ | a_2= 0.0010028289633265202 \\ |
||
+ | a_3= -0.000011428855401098336\\ |
||
+ | a_4= 7.61813379974462\times 10^{-8}\\ |
||
+ | a_5= -2.8376606186641804\!\times\! 10^{-10}~\\ |
||
+ | a_6= 4.651275051439759\times 10^{-13} |
||
+ | \end{array}$ |
||
+ | $\begin{array}{l} |
||
+ | b_1= 0.03223483760044156\\ |
||
+ | b_2= 0.0004974915308429358\\ |
||
+ | b_3= 4.7768603073237505\times 10^{-6}\\ |
||
+ | b_4= 3.071615607112112\times 10^{-8}\\ |
||
+ | b_5= 1.292095753771865\times 10^{-10}\\ |
||
+ | b_6= 2.925186494186955\times 10^{-13} |
||
+ | \end{array} |
||
+ | $ |
||
+ | |||
+ | ==[[C++]] generator of curves== |
||
+ | |||
+ | <poem><nomathjax><nowiki> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | //using namespace std; |
||
+ | #include <complex> |
||
+ | typedef std::complex<double> z_type; |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | #define M(x,y) fprintf(o,"%6.4lf %6.4lf M\n",0.+x,0.+y); |
||
+ | #define L(x,y) fprintf(o,"%6.4lf %6.4lf L\n",0.+x,0.+y); |
||
+ | |||
+ | #include "korifit76.cin" |
||
+ | #include "ado.cin" |
||
+ | |||
+ | DB L1=2.404825557695773; |
||
+ | DB L2=5.5200781102863115; |
||
+ | DB L3=8.653727912911013; |
||
+ | DB L4=11.791534439014281; |
||
+ | DB L5=14.930917708487787; |
||
+ | DB L6=18.071063967910924; |
||
+ | DB L7=21.21163662987926; |
||
+ | DB L8=24.352471530749302; |
||
+ | |||
+ | DB LN[9]={ 0., 2.404825557695773, 5.5200781102863115, |
||
+ | 8.653727912911013,11.791534439014281,14.930917708487787, |
||
+ | 18.071063967910924,21.21163662987926, 24.352471530749302}; |
||
+ | |||
+ | int main(){int m,n,i; double x,y,z,t,u; FILE *o; |
||
+ | |||
+ | o=fopen("norifit76plo.eps","w"); |
||
+ | ado(o,520,220); |
||
+ | fprintf(o,"10 10 translate 10 10 scale 2 setlinecap 1 setlinejoin\n"); |
||
+ | |||
+ | for(m=0;m<51;m+=1) {M(m,0)L(m,15)} |
||
+ | for(n=0;n<16;n+=1){M(0,n)L(50,n)} |
||
+ | fprintf(o,"0.04 W S\n"); |
||
+ | |||
+ | for(m=2;m<6;m++){ x=LN[m]/LN[1]; x*=x; M(x,0)L(x,20) } |
||
+ | fprintf(o,"0.03 W 1 0 1 RGB S\n"); |
||
+ | |||
+ | for(n=1;n<5001;n+=5){ x=.01*n; |
||
+ | y=j0(L1*sqrt(x))/(1.-x); y*=y; |
||
+ | z=Re(korifit76(x)); z*=z; |
||
+ | t=y-z; |
||
+ | u=-log(fabs(t))/log(10); |
||
+ | printf("%6.2lf %19.16lf %19.16lf %19.16lf %8.2lf\n",x,y,z,t,u); |
||
+ | if(n==1) M(x,u) else if(u>0 && u <20)L(x,u) |
||
+ | } |
||
+ | fprintf(o,"0 .7 0 RGB .1 W S\n"); |
||
+ | |||
+ | for(n=1;n<5001;n+=5){ x=.01*n; |
||
+ | y=j0(L1*sqrt(x))/(1.-x); |
||
+ | z=Re(korifit76(x)); |
||
+ | t=y-z; |
||
+ | u=-log(fabs(t))/log(10); |
||
+ | printf("%6.2lf %19.16lf %19.16lf %19.16lf %8.2lf\n",x,y,z,t,u); |
||
+ | if(n==1) M(x,u) else if(u>0 && u <20)L(x,u) |
||
+ | } |
||
+ | fprintf(o,"1 0 0 RGB .1 W S\n"); |
||
+ | |||
+ | for(n=1;n<5001;n+=5){ x=.01*n; |
||
+ | y=j0(L1*sqrt(x))/(1.-x); y*=y; |
||
+ | z=Re(korifit76(x)); z*=z; |
||
+ | t=y-z; |
||
+ | u=-log(fabs(t)/(fabs(y)+fabs(z)))/log(10); |
||
+ | printf("%6.2lf %19.16lf %19.16lf %19.16lf %8.2lf\n",x,y,z,t,u); |
||
+ | if(n==1) M(x,u) else if(u>0 && u <20)L(x,u) |
||
+ | } |
||
+ | fprintf(o,"0 0 0 RGB .1 W S\n"); |
||
+ | |||
+ | for(n=1;n<5001;n+=5){ x=.01*n; |
||
+ | y=j0(L1*sqrt(x))/(1.-x); |
||
+ | if(n==1) M(x,10*y) else if(y>-1 && y <2)L(x,10*y) } |
||
+ | fprintf(o,"1 0 0 RGB .1 W S\n"); |
||
+ | |||
+ | for(n=1;n<5001;n+=5){ x=.01*n; |
||
+ | y=j0(L1*sqrt(x))/(1.-x); y*=y; |
||
+ | if(n==1) M(x,10*y) else if(y>-1 && y <2)L(x,10*y) } |
||
+ | fprintf(o,"0 .6 0 RGB .1 W S\n"); |
||
+ | |||
+ | fprintf(o,"showpage\n%c%cTrailer\n",'%','%'); fclose(o); |
||
+ | system("epstopdf norifit76plo.eps"); |
||
+ | system( "open norifit76plo.pdf"); |
||
+ | return 0;} |
||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | |||
+ | ==[[Latex]] generator of labels== |
||
+ | |||
+ | <poem><nomathjax><nowiki> |
||
+ | </nowiki></nomathjax></poem> |
Latest revision as of 08:44, 1 December 2018
Fragment from image http://mizugadro.mydns.jp/t/index.php/File:Norifit76plot.jpg
Analysis of the approximation of nori function through function korifit76,
nori$(x)=\, $kori$(x)^2\approx\, $korifit76$(x)^2$
The free agreements are shown:
$\mathrm{A}(x)= - \lg\! \Big( \big|\mathrm{korifit76}(x)^2-\mathrm{nori}(x)\big|\Big)$
$\mathrm{B}(x)= - \lg\! \Big( \big|\mathrm{korifit76}(x)-\mathrm{kori}(x)\big| \Big)$
$\displaystyle \mathrm{C}(x)= - \lg \left(\frac {\big|\mathrm{korifit76}(x)-\mathrm{kori}(x)\big|}{\big|\mathrm{korifit76}(x)\big| + \big|\mathrm{kori}(x)\big|}\,\right)$
where functions nori and kori are evaluated through the straightforward definitions using the C++ built-in Bessel function double j0(double ).
kori$(x) =\,$mori$\big(\sqrt{x}\big)$ $\,= \displaystyle \frac{ J_0\big(L_1 \sqrt{x} \big)}{1-x}$
where $L_n =\,$BesselJZero$[0,n]~$ is $n$th zero of function BesselJ0.
For reference, at the bottom, functions nori and kori, scaled with factor 10, are shown with green and red curves.
The additional vertical grid lines show abscissas $\displaystyle M_n=\left(\frac{L_n}{L_1}\right)^2~ $ for $~n=2\,..\,5$
korifit76
Function korifit76 is defined in the following way:
$\mathrm{kori76fit}= \displaystyle \prod_{n=2}^7\! \left(1-\frac{L_1^2}{L_n^2}x\right)~ \frac{1+\sum_{n=1}^6 a_n x^n}{1+\sum_{n=1}^6 b_n x^n} $
where $L_n=\mathrm{BesselJZero}[0,n]$ and coefficients $a$ and $b$ are:
$\begin{array}{l} a_1=-0.04844698269548584 \\ a_2= 0.0010028289633265202 \\ a_3= -0.000011428855401098336\\ a_4= 7.61813379974462\times 10^{-8}\\ a_5= -2.8376606186641804\!\times\! 10^{-10}~\\ a_6= 4.651275051439759\times 10^{-13} \end{array}$ $\begin{array}{l} b_1= 0.03223483760044156\\ b_2= 0.0004974915308429358\\ b_3= 4.7768603073237505\times 10^{-6}\\ b_4= 3.071615607112112\times 10^{-8}\\ b_5= 1.292095753771865\times 10^{-10}\\ b_6= 2.925186494186955\times 10^{-13} \end{array} $
C++ generator of curves
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
//using namespace std;
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#define M(x,y) fprintf(o,"%6.4lf %6.4lf M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%6.4lf %6.4lf L\n",0.+x,0.+y);
#include "korifit76.cin"
#include "ado.cin"
DB L1=2.404825557695773;
DB L2=5.5200781102863115;
DB L3=8.653727912911013;
DB L4=11.791534439014281;
DB L5=14.930917708487787;
DB L6=18.071063967910924;
DB L7=21.21163662987926;
DB L8=24.352471530749302;
DB LN[9]={ 0., 2.404825557695773, 5.5200781102863115,
8.653727912911013,11.791534439014281,14.930917708487787,
18.071063967910924,21.21163662987926, 24.352471530749302};
int main(){int m,n,i; double x,y,z,t,u; FILE *o;
o=fopen("norifit76plo.eps","w");
ado(o,520,220);
fprintf(o,"10 10 translate 10 10 scale 2 setlinecap 1 setlinejoin\n");
for(m=0;m<51;m+=1) {M(m,0)L(m,15)}
for(n=0;n<16;n+=1){M(0,n)L(50,n)}
fprintf(o,"0.04 W S\n");
for(m=2;m<6;m++){ x=LN[m]/LN[1]; x*=x; M(x,0)L(x,20) }
fprintf(o,"0.03 W 1 0 1 RGB S\n");
for(n=1;n<5001;n+=5){ x=.01*n;
y=j0(L1*sqrt(x))/(1.-x); y*=y;
z=Re(korifit76(x)); z*=z;
t=y-z;
u=-log(fabs(t))/log(10);
printf("%6.2lf %19.16lf %19.16lf %19.16lf %8.2lf\n",x,y,z,t,u);
if(n==1) M(x,u) else if(u>0 && u <20)L(x,u)
}
fprintf(o,"0 .7 0 RGB .1 W S\n");
for(n=1;n<5001;n+=5){ x=.01*n;
y=j0(L1*sqrt(x))/(1.-x);
z=Re(korifit76(x));
t=y-z;
u=-log(fabs(t))/log(10);
printf("%6.2lf %19.16lf %19.16lf %19.16lf %8.2lf\n",x,y,z,t,u);
if(n==1) M(x,u) else if(u>0 && u <20)L(x,u)
}
fprintf(o,"1 0 0 RGB .1 W S\n");
for(n=1;n<5001;n+=5){ x=.01*n;
y=j0(L1*sqrt(x))/(1.-x); y*=y;
z=Re(korifit76(x)); z*=z;
t=y-z;
u=-log(fabs(t)/(fabs(y)+fabs(z)))/log(10);
printf("%6.2lf %19.16lf %19.16lf %19.16lf %8.2lf\n",x,y,z,t,u);
if(n==1) M(x,u) else if(u>0 && u <20)L(x,u)
}
fprintf(o,"0 0 0 RGB .1 W S\n");
for(n=1;n<5001;n+=5){ x=.01*n;
y=j0(L1*sqrt(x))/(1.-x);
if(n==1) M(x,10*y) else if(y>-1 && y <2)L(x,10*y) }
fprintf(o,"1 0 0 RGB .1 W S\n");
for(n=1;n<5001;n+=5){ x=.01*n;
y=j0(L1*sqrt(x))/(1.-x); y*=y;
if(n==1) M(x,10*y) else if(y>-1 && y <2)L(x,10*y) }
fprintf(o,"0 .6 0 RGB .1 W S\n");
fprintf(o,"showpage\n%c%cTrailer\n",'%','%'); fclose(o);
system("epstopdf norifit76plo.eps");
system( "open norifit76plo.pdf");
return 0;}
Latex generator of labels
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 06:13, 1 December 2018 | 967 × 448 (155 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.