Difference between revisions of "File:Penmap.jpg"
(Importing image file) |
|||
Line 1: | Line 1: | ||
+ | [[Complex map]] of natural [[pentation]], |
||
− | Importing image file |
||
+ | |||
+ | $u\!+\!\mathrm i v=\mathrm{pen}(x\!+\! \mathrm i y)$ in the $x,y$ plane. |
||
+ | |||
+ | This image is used as figure 10.4 of the book [[Суперфункции]] (In Russian) |
||
+ | <ref> |
||
+ | https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0 <br> |
||
+ | http://www.ils.uec.ac.jp/~dima/BOOK/202.pdf <br> |
||
+ | http://mizugadro.mydns.jp/BOOK/202.pdf |
||
+ | Д.Кузнецов. Суперфункции. Lambert Academic Publishing, 2014 |
||
+ | </ref>. |
||
+ | |||
+ | Also, this image is used as figure 6 of article Evaluation of holomorphic ackermanns |
||
+ | <ref> |
||
+ | http://article.sciencepublishinggroup.com/pdf/10.11648.j.acm.20140306.14.pdf <br> |
||
+ | http://www.ils.uec.ac.jp/~dima/PAPERS/2014acker.pdf <br> |
||
+ | http://mizugadro.mydns.jp/PAPERS/2014acker.pdf D.Kouznetsov. Evaluation of holomorphic ackermanns. Applied and Computational Mathematics. Vol. 3, No. 6, 2014, pp. 307-314. |
||
+ | </ref>. |
||
+ | |||
+ | Soom–in of this map is loaded as http://mizugadro.mydns.jp/t/index.php?title=File:Penzoo25t400.jpg |
||
+ | |||
+ | ==References== |
||
+ | <references/> |
||
+ | |||
+ | ==[[C++]] generator of curves== |
||
+ | |||
+ | Files [[ado.cin]], [[conto.cin]], [[fsexp.cin]], [[fslog.cin]] should be loaded to the working directory in order to compile the code below |
||
+ | <poem><nomathjax><nowiki> |
||
+ | #include <math.h> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | #include <complex> |
||
+ | typedef std::complex<double> z_type; |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | #include "conto.cin" |
||
+ | #include "fsexp.cin" |
||
+ | #include "fslog.cin" |
||
+ | |||
+ | z_type pen0(z_type z){ |
||
+ | DB Lp=-1.8503545290271812; |
||
+ | DB k,a,b; |
||
+ | // k=1.86573322821; a=-.62632418; b=0.4827; |
||
+ | k=1.86573322821; a=-.6263241; b=0.4827; |
||
+ | |||
+ | z_type e=exp(k*z); |
||
+ | return Lp + e*(1.+e*(a+b*e)); |
||
+ | } |
||
+ | |||
+ | z_type pen7(z_type z){ DB x; int m,n; z=pen0(z+(2.24817451898-7.)); |
||
+ | DO(n,7) { if(Re(z)>8.) return 999.; z=FSEXP(z); if(abs(z)<40) goto L1; return 999.; L1: ;} |
||
+ | return z; } |
||
+ | |||
+ | z_type pen(z_type z){ DB x; int m,n; |
||
+ | x=Re(z); if(x<= -4.) return pen0(z); |
||
+ | m=int(x+5.); |
||
+ | z-=DB(m); |
||
+ | z=pen0(z); |
||
+ | DO(n,m) z=FSEXP(z); |
||
+ | return z; |
||
+ | } |
||
+ | |||
+ | int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd; |
||
+ | int M=401,M1=M+1; |
||
+ | int N=801,N1=N+1; |
||
+ | DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
||
+ | char v[M1*N1]; // v is working array |
||
+ | FILE *o;o=fopen("penma.eps","w"); ado(o,828,828); |
||
+ | fprintf(o,"422 420 translate\n 100 100 scale\n"); |
||
+ | DO(m,M1) X[m]=-4.+.02*(m-.5); |
||
+ | DO(n,N1) Y[n]=-4.+.01*(n-.5); |
||
+ | for(m=-4;m<5;m++) {M(m,-4)L(m,4)} |
||
+ | for(n=-4;n<5;n++) {M( -4,n)L(4,n)} fprintf(o,"2 setlinecap .004 W 0 0 0 RGB S\n"); |
||
+ | |||
+ | DO(m,M1)DO(n,N1){ g[m*N1+n]=9999; |
||
+ | f[m*N1+n]=9999;} |
||
+ | DO(m,M1){x=X[m]; |
||
+ | DO(n,N1){y=Y[n]; z=z_type(x,y); |
||
+ | // c=pen0(z); |
||
+ | // c=FSEXP(pen0(z-1.)); |
||
+ | // c=FSEXP(FSEXP(pen0(z-2.))); |
||
+ | c=pen7(z); |
||
+ | // d=FSEXP(pen(z-1.)); |
||
+ | // p=abs((c-d)/(c+d)); p=-log(p)/log(10.); |
||
+ | p=Re(c); q=Im(c); |
||
+ | if(p>-9999 && p<9999 && fabs(p)>1.e-11) g[m*N1+n]=p; |
||
+ | if(q>-9999 && q<9999 && fabs(q)>1.e-11) f[m*N1+n]=q; |
||
+ | }} |
||
+ | // #include "plofu.cin" |
||
+ | |||
+ | fprintf(o,"1 setlinejoin 2 setlinecap\n"); |
||
+ | |||
+ | p=2;q=.5; |
||
+ | for(m=-19;m<19;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (m+.1*n),-q,q); |
||
+ | fprintf(o,".002 W 0 .6 0 RGB S\n"); |
||
+ | for(m=0;m<29;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q,q); |
||
+ | fprintf(o,".002 W .9 0 0 RGB S\n"); |
||
+ | for(m=0;m<29;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q,q); |
||
+ | fprintf(o,".002 W 0 0 .9 RGB S\n"); |
||
+ | |||
+ | for(m= 1;m<20;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p);fprintf(o,".012 W .9 0 0 RGB S\n"); |
||
+ | for(m= 1;m<20;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p);fprintf(o,".012 W 0 0 .9 RGB S\n"); |
||
+ | conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".012 W .6 0 .6 RGB S\n"); |
||
+ | for(m=-31;m<32;m++)conto(o,g,w,v,X,Y,M,N,(0.+m),-p,p);fprintf(o,".012 W 0 0 0 RGB S\n"); |
||
+ | |||
+ | DB t2=M_PI/1.86573322821; |
||
+ | DB tx=-2.32; |
||
+ | |||
+ | M(tx,t2)L(4.1,t2) |
||
+ | M(tx,-t2)L(4.1,-t2) |
||
+ | fprintf(o,"0 setlinecap .03 W 1 1 1 RGB S\n"); |
||
+ | DO(n,64){ x=tx+.1*n; M(x,t2) L(x+.04,t2) } |
||
+ | DO(n,64){ x=tx+.1*n; M(x,-t2) L(x+.04,-t2) } |
||
+ | fprintf(o,"0 setlinecap .04 W 0 0 0 RGB S\n"); |
||
+ | |||
+ | //conto(o,g,w,v,X,Y,M,N, ( 1. ),-99,99); fprintf(o,".12 W 1 .5 0 RGB S\n"); |
||
+ | |||
+ | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
+ | |||
+ | printf("pen7(-1)=%18.14f\n", Re(pen7(-1.))); |
||
+ | printf("Pi/1.86573322821=%18.14f\n", M_PI/1.86573322821); |
||
+ | |||
+ | system("epstopdf penma.eps"); |
||
+ | system( "open penma.pdf"); |
||
+ | } |
||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==[[Latex]] generator of labelw== |
||
+ | |||
+ | <poem><nomathjax><nowiki> |
||
+ | \documentclass[12pt]{article} |
||
+ | \paperheight 832px |
||
+ | \paperwidth 846px |
||
+ | \textwidth 1394px |
||
+ | \textheight 1300px |
||
+ | \topmargin -104px |
||
+ | \oddsidemargin -80px |
||
+ | \usepackage{graphics} |
||
+ | \usepackage{rotating} |
||
+ | \newcommand \sx {\scalebox} |
||
+ | \newcommand \rot {\begin{rotate}} |
||
+ | \newcommand \ero {\end{rotate}} |
||
+ | \newcommand \ing {\includegraphics} |
||
+ | \newcommand \rmi {\mathrm{i}} |
||
+ | \begin{document} |
||
+ | {\begin{picture}(824,820) |
||
+ | %\put(12,0){\ing{24}} |
||
+ | \put(12,0){\ing{penma}} |
||
+ | \put(8,808){\sx{3}{$y$}} |
||
+ | \put(8,709){\sx{3}{$3$}} |
||
+ | \put(8,609){\sx{3}{$2$}} |
||
+ | \put(8,509){\sx{3}{$1$}} |
||
+ | \put(8,409){\sx{3}{$0$}} |
||
+ | \put(-12,309){\sx{3}{$-1$}} |
||
+ | \put(-12,209){\sx{3}{$-2$}} |
||
+ | \put(-12,109){\sx{3}{$-3$}} |
||
+ | \put(-12,9){\sx{3}{$-4$}} |
||
+ | \put(4,-8){\sx{3}{$-4$}} |
||
+ | \put(104,-8){\sx{3}{$-3$}} |
||
+ | \put(204,-8){\sx{3}{$-2$}} |
||
+ | \put(304,-8){\sx{3}{$-1$}} |
||
+ | \put(427,-8){\sx{3}{$0$}} |
||
+ | \put(527,-8){\sx{3}{$1$}} |
||
+ | \put(627,-8){\sx{3}{$2$}} |
||
+ | \put(727,-8){\sx{3}{$3$}} |
||
+ | \put(821,-8){\sx{3}{$x$}} |
||
+ | \put(50, 747){\sx{4}{$v\!=\!0$}} |
||
+ | \put(50, 578){\sx{4}{$v\!=\!0$}} \put(760, 580){\sx{4}{\bf cut}} |
||
+ | \put(50, 409){\sx{4}{$v\!=\!0$}}% |
||
+ | \put(50, 240){\sx{4}{$v\!=\!0$}} \put(760, 241){\sx{4}{\bf cut}} |
||
+ | \put(50, 71){\sx{4}{$v\!=\!0$}} |
||
+ | % |
||
+ | \put(326, 638){\sx{4}{$v\!=\!-1$}} |
||
+ | \put(340, 520){\sx{4}{$v\!=\!1$}} |
||
+ | \put(326, 298){\sx{4}{$v\!=\!-1$}} |
||
+ | \put(336, 182){\sx{4}{$v\!=\!1$}} |
||
+ | % |
||
+ | \put(250, 352){\sx{4}{\rot{90}$u\!=\!-1$\ero}} |
||
+ | \put(348, 362){\sx{4}{\rot{90}$u\!=\!0$\ero}} |
||
+ | \put(448, 372){\sx{4}{\rot{90}$u\!=\!1$\ero}} |
||
+ | \put(522, 372){\sx{4}{\rot{90}$u\!=\!2$\ero}} |
||
+ | \end{picture} |
||
+ | \end{document} |
||
+ | |||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | [[Category:Book]] |
||
+ | [[Category:BookMap]] |
||
+ | [[Category:Complex map]] |
||
+ | [[Category:C++]] |
||
+ | [[Category:Latex]] |
||
+ | [[Category:Superfunction]] |
||
+ | [[Category:Pentation]] |
||
+ | [[Category:Natural pentation]] |
||
+ | [[Category:Natural tetration]] |
||
+ | [[Category:Tetration]] |
Latest revision as of 08:46, 1 December 2018
Complex map of natural pentation,
$u\!+\!\mathrm i v=\mathrm{pen}(x\!+\! \mathrm i y)$ in the $x,y$ plane.
This image is used as figure 10.4 of the book Суперфункции (In Russian) [1].
Also, this image is used as figure 6 of article Evaluation of holomorphic ackermanns [2].
Soom–in of this map is loaded as http://mizugadro.mydns.jp/t/index.php?title=File:Penzoo25t400.jpg
References
- ↑
https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0
http://www.ils.uec.ac.jp/~dima/BOOK/202.pdf
http://mizugadro.mydns.jp/BOOK/202.pdf Д.Кузнецов. Суперфункции. Lambert Academic Publishing, 2014 - ↑
http://article.sciencepublishinggroup.com/pdf/10.11648.j.acm.20140306.14.pdf
http://www.ils.uec.ac.jp/~dima/PAPERS/2014acker.pdf
http://mizugadro.mydns.jp/PAPERS/2014acker.pdf D.Kouznetsov. Evaluation of holomorphic ackermanns. Applied and Computational Mathematics. Vol. 3, No. 6, 2014, pp. 307-314.
C++ generator of curves
Files ado.cin, conto.cin, fsexp.cin, fslog.cin should be loaded to the working directory in order to compile the code below
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
#include "fsexp.cin"
#include "fslog.cin"
z_type pen0(z_type z){
DB Lp=-1.8503545290271812;
DB k,a,b;
// k=1.86573322821; a=-.62632418; b=0.4827;
k=1.86573322821; a=-.6263241; b=0.4827;
z_type e=exp(k*z);
return Lp + e*(1.+e*(a+b*e));
}
z_type pen7(z_type z){ DB x; int m,n; z=pen0(z+(2.24817451898-7.));
DO(n,7) { if(Re(z)>8.) return 999.; z=FSEXP(z); if(abs(z)<40) goto L1; return 999.; L1: ;}
return z; }
z_type pen(z_type z){ DB x; int m,n;
x=Re(z); if(x<= -4.) return pen0(z);
m=int(x+5.);
z-=DB(m);
z=pen0(z);
DO(n,m) z=FSEXP(z);
return z;
}
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
int M=401,M1=M+1;
int N=801,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
FILE *o;o=fopen("penma.eps","w"); ado(o,828,828);
fprintf(o,"422 420 translate\n 100 100 scale\n");
DO(m,M1) X[m]=-4.+.02*(m-.5);
DO(n,N1) Y[n]=-4.+.01*(n-.5);
for(m=-4;m<5;m++) {M(m,-4)L(m,4)}
for(n=-4;n<5;n++) {M( -4,n)L(4,n)} fprintf(o,"2 setlinecap .004 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){ g[m*N1+n]=9999;
f[m*N1+n]=9999;}
DO(m,M1){x=X[m];
DO(n,N1){y=Y[n]; z=z_type(x,y);
// c=pen0(z);
// c=FSEXP(pen0(z-1.));
// c=FSEXP(FSEXP(pen0(z-2.)));
c=pen7(z);
// d=FSEXP(pen(z-1.));
// p=abs((c-d)/(c+d)); p=-log(p)/log(10.);
p=Re(c); q=Im(c);
if(p>-9999 && p<9999 && fabs(p)>1.e-11) g[m*N1+n]=p;
if(q>-9999 && q<9999 && fabs(q)>1.e-11) f[m*N1+n]=q;
}}
// #include "plofu.cin"
fprintf(o,"1 setlinejoin 2 setlinecap\n");
p=2;q=.5;
for(m=-19;m<19;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (m+.1*n),-q,q);
fprintf(o,".002 W 0 .6 0 RGB S\n");
for(m=0;m<29;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q,q);
fprintf(o,".002 W .9 0 0 RGB S\n");
for(m=0;m<29;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q,q);
fprintf(o,".002 W 0 0 .9 RGB S\n");
for(m= 1;m<20;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p);fprintf(o,".012 W .9 0 0 RGB S\n");
for(m= 1;m<20;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p);fprintf(o,".012 W 0 0 .9 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".012 W .6 0 .6 RGB S\n");
for(m=-31;m<32;m++)conto(o,g,w,v,X,Y,M,N,(0.+m),-p,p);fprintf(o,".012 W 0 0 0 RGB S\n");
DB t2=M_PI/1.86573322821;
DB tx=-2.32;
M(tx,t2)L(4.1,t2)
M(tx,-t2)L(4.1,-t2)
fprintf(o,"0 setlinecap .03 W 1 1 1 RGB S\n");
DO(n,64){ x=tx+.1*n; M(x,t2) L(x+.04,t2) }
DO(n,64){ x=tx+.1*n; M(x,-t2) L(x+.04,-t2) }
fprintf(o,"0 setlinecap .04 W 0 0 0 RGB S\n");
//conto(o,g,w,v,X,Y,M,N, ( 1. ),-99,99); fprintf(o,".12 W 1 .5 0 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
printf("pen7(-1)=%18.14f\n", Re(pen7(-1.)));
printf("Pi/1.86573322821=%18.14f\n", M_PI/1.86573322821);
system("epstopdf penma.eps");
system( "open penma.pdf");
}
Latex generator of labelw
\documentclass[12pt]{article}
\paperheight 832px
\paperwidth 846px
\textwidth 1394px
\textheight 1300px
\topmargin -104px
\oddsidemargin -80px
\usepackage{graphics}
\usepackage{rotating}
\newcommand \sx {\scalebox}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\newcommand \ing {\includegraphics}
\newcommand \rmi {\mathrm{i}}
\begin{document}
{\begin{picture}(824,820)
%\put(12,0){\ing{24}}
\put(12,0){\ing{penma}}
\put(8,808){\sx{3}{$y$}}
\put(8,709){\sx{3}{$3$}}
\put(8,609){\sx{3}{$2$}}
\put(8,509){\sx{3}{$1$}}
\put(8,409){\sx{3}{$0$}}
\put(-12,309){\sx{3}{$-1$}}
\put(-12,209){\sx{3}{$-2$}}
\put(-12,109){\sx{3}{$-3$}}
\put(-12,9){\sx{3}{$-4$}}
\put(4,-8){\sx{3}{$-4$}}
\put(104,-8){\sx{3}{$-3$}}
\put(204,-8){\sx{3}{$-2$}}
\put(304,-8){\sx{3}{$-1$}}
\put(427,-8){\sx{3}{$0$}}
\put(527,-8){\sx{3}{$1$}}
\put(627,-8){\sx{3}{$2$}}
\put(727,-8){\sx{3}{$3$}}
\put(821,-8){\sx{3}{$x$}}
\put(50, 747){\sx{4}{$v\!=\!0$}}
\put(50, 578){\sx{4}{$v\!=\!0$}} \put(760, 580){\sx{4}{\bf cut}}
\put(50, 409){\sx{4}{$v\!=\!0$}}%
\put(50, 240){\sx{4}{$v\!=\!0$}} \put(760, 241){\sx{4}{\bf cut}}
\put(50, 71){\sx{4}{$v\!=\!0$}}
%
\put(326, 638){\sx{4}{$v\!=\!-1$}}
\put(340, 520){\sx{4}{$v\!=\!1$}}
\put(326, 298){\sx{4}{$v\!=\!-1$}}
\put(336, 182){\sx{4}{$v\!=\!1$}}
%
\put(250, 352){\sx{4}{\rot{90}$u\!=\!-1$\ero}}
\put(348, 362){\sx{4}{\rot{90}$u\!=\!0$\ero}}
\put(448, 372){\sx{4}{\rot{90}$u\!=\!1$\ero}}
\put(522, 372){\sx{4}{\rot{90}$u\!=\!2$\ero}}
\end{picture}
\end{document}
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 06:13, 1 December 2018 | 2,350 × 2,311 (1.56 MB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following 2 pages use this file: