Difference between revisions of "File:Analuxp01t400.jpg"

From TORI
Jump to navigation Jump to search
($ -> \( ; description ; refs ; pre ; keywords)
Line 1: Line 1:
  +
{{oq|Analuxp01u400.jpg|}}
Comparison of various fits of the [[natural titration]] with the [[complex map]s
 
  +
[[Complex map]]s of various approximations \(f\) of [[natural tetration]].
   
  +
\(u+\mathrm i v=f(x\!+\!\mathrm i y)\)
Lines of constant [[logamplitude]] $u$ and phase $v$ are shown in the complex plane:
 
   
  +
Note, that in the Book
$\exp(u\!+\!\mathrm i v) = f(x\!+\!\mathrm i y)$
 
  +
[[Superfunctions]]<ref>
  +
https://www.amazon.co.jp/-/en/Dmitrii-Kouznetsov/dp/6202672862 <br>
  +
https://www.morebooks.de/shop-ui/shop/product/978-620-2-67286-3 <br>
  +
https://mizugadro.mydns.jp/BOOK/458.pdf
  +
Dmitrii Kouznetsov. [[Superfunctions]]. [[Lambert Academic Piblishing]], 2020.
  +
Page 181, Fig.14.4.
  +
</ref>, 2020
  +
(Russian version: [[Суперфункции]]<ref>
  +
https://mizugadro.mydns.jp/BOOK/2020.pdf
  +
Дмитрий Кузнецов. [[Суперфункции]]. [[Lambert Academic Piblishing]], 2014.
  +
Page 180, Fig.14.4.
  +
</ref>, 2014), the similar map is shown in a different way, \(u\) means logamplitude and \(v\) means phase there, the lines are shown for
   
  +
\(\exp(u+\mathrm i v)=f(x\!+\!\mathrm i y)\).
for various approximations described below.
 
  +
  +
I do not know which notation is better.
   
 
==Description of curves==
 
==Description of curves==
Note that in this figure, $u$ and $v$ are [[logamplitude]] and [[phase]] of the plotted functions; not the real and imaginary parts, as usually.
 
This corresponds to the displacement of the map for unity to the right, along the real axis.
 
In this case, it is easier to guess the asymptotic behaviour of the function (last picture, d) from its primitive fit (picture b).
 
   
===a: Linear approximation by Gusmad===
+
===e: Linear approximation by Gusmad===
This is approximation, function $f$ linear in the ramge $-1 < \Re(z) \le 0$. This approximation had been suggested in 2006 by M.H.Hooshmand
+
This is approximation, linear in the ramge \(-1 < \Re(z) \le 0\)
  +
suggested in 2006 by M.H.Hooshmand
<ref>
 
  +
http://www.tandfonline.com/doi/full/10.1080/10652460500422247#.UoSKyhZT_-k
 
M.H.Hooshmand. ”Ultra power and ultra exponential functions”. Integral Transforms and Special Functions 17 (8), 549-558 (2006)
+
<ref>3. M.H.Hooshmand. ”Ultra power and ultra exponential functions”. Integral Transforms and Special Functions 17 (8), 549-558 (2006)
</ref>.
+
</ref>
  +
  +
\(u+\mathrm i v=\mathrm{uxp}(x\!+\!\mathrm i y)\)
   
$f(z)=\mathrm{uxp}(z)=\!\left\{\!\!\!\!
+
\(\mathrm{uxp}(z)=\!\left\{\!\!
 
\begin{array}{ccccc cc}
 
\begin{array}{ccccc cc}
 
\ln\!\big({\rm uxp}(z\!+\!1)\big)~&~{\rm at}~&~ \!&\! \!&\! \Re(z) \!&\! \le \!&\! -1 \\
 
\ln\!\big({\rm uxp}(z\!+\!1)\big)~&~{\rm at}~&~ \!&\! \!&\! \Re(z) \!&\! \le \!&\! -1 \\
Line 25: Line 39:
 
\exp\!\big({\rm uxp}(z\!-\!1)\big)~&{~\rm at}~&~ 0 \!&\! < \!&\! \Re(z) \!&
 
\exp\!\big({\rm uxp}(z\!-\!1)\big)~&{~\rm at}~&~ 0 \!&\! < \!&\! \Re(z) \!&
 
\end{array}
 
\end{array}
\right.$
+
\right.\)
   
===b: Approximation for moderate values of imaginary part of the argument===
+
===f: Approximation for moderate values of imaginary part of the argument===
   
$ f(z)=\mathrm{Fit}_{3}(z) = \left\{\!\!
+
\(\mathrm {Fit}_{3}(z) = \left\{\!\!
 
\begin{array}{ccccc cc}
 
\begin{array}{ccccc cc}
 
\ln\!\big({\rm Fit}_{3}(z\!+\!1)\big)~&~{~\rm at~}~&~ \!&\! \!&\! \Re(z) \!&\! \le \!&\! -1 \\
 
\ln\!\big({\rm Fit}_{3}(z\!+\!1)\big)~&~{~\rm at~}~&~ \!&\! \!&\! \Re(z) \!&\! \le \!&\! -1 \\
Line 36: Line 50:
 
\end{array}
 
\end{array}
 
\right.
 
\right.
  +
\)
$
 
   
 
where
 
where
   
$\displaystyle
+
\(\displaystyle
 
\mathrm{fit}_3(z) \!=\! 0.6\!~\mathrm{fit}_{2}(z)+0.4\!~\ln\big( \mathrm{fit}_{2}(z+1)\big)
 
\mathrm{fit}_3(z) \!=\! 0.6\!~\mathrm{fit}_{2}(z)+0.4\!~\ln\big( \mathrm{fit}_{2}(z+1)\big)
  +
\)
$
 
   
$\displaystyle
+
\(\displaystyle
 
\mathrm{fit}_2(z) \!=\!
 
\mathrm{fit}_2(z) \!=\!
 
\ln(2\!+\!z)
 
\ln(2\!+\!z)
Line 52: Line 66:
 
\Big(\!\mathrm e\! -2\! +\! \ln\frac{4}{3} \Big)
 
\Big(\!\mathrm e\! -2\! +\! \ln\frac{4}{3} \Big)
 
- \ln 2
 
- \ln 2
\right)$
+
\right)\)
   
$ s_2(z) = \exp\!\Big(\exp(z-2.51)\Big)-0.6+0.08(z\!+\!1) $
+
\( s_2(z) = \exp\!\Big(\exp(z-2.51)\Big)-0.6+0.08(z\!+\!1) \)
   
===c. Approximation for large values of imaginary part of the argument===
+
===g. Approximation for large values of imaginary part of the argument===
   
In the upper half plane, say, $y>1/2$, the $\mathrm{fit}_6$ is shown,
+
In the upper half plane, say, \(y>1/2\), the \(\mathrm{fit}_6\) is shown,
   
$f(z)=\mathrm{fit}_6(z) = \left\{
+
\(u+\mathrm i v =\mathrm{fit}_6(x\!+\!\mathrm i y)\)
  +
  +
where
  +
  +
\(\mathrm{fit}_6(z) = \left\{
 
\begin{array}
 
\begin{array}
 
~
 
~
Line 66: Line 84:
 
\exp\Big(\mathrm{fit}_6(z\!-\!1)\Big)~,~ \Re(z)\ge -8
 
\exp\Big(\mathrm{fit}_6(z\!-\!1)\Big)~,~ \Re(z)\ge -8
 
\end{array}
 
\end{array}
\right.$
+
\right.\)
   
  +
and
for $\Re(z)>0.5$ and
 
   
$f(z)=\mathrm{fit}_6(z^*)^*$
+
\(u+\mathrm i v =\mathrm{fit}_6(x\!-\!\mathrm i y)^*\)
   
in the lower half plane, say, $\Im(z)<-1/2$.
+
in the lower half plane, say, \(y<-1/2\).
   
The strip of intermediate values $|y|<1/2$ in the picture '''c''' is left empty.
+
The strip of intermediate values \(|y|<1/2\) is left empty.
   
In formula above, $L\approx 0.31813150520476413 + 1.3372357014306895 \,\mathrm i$ is [[fixed point]] of logarithm, $L=\ln(L)$.
+
In formula above, \(L\approx 0.31813150520476413 + 1.3372357014306895 \,\mathrm i\) is [[fixed point]] of logarithm, \(L=\ln(L)\).
For [[Natural tetration]], the increment $k=L$.
+
For [[Natural tetration]], the increment \(k=L\).
Parameter $r$ provides the match of the two asymptotics. It is fundamental mathematical constant;
+
Parameter \(r\) provides the match of the two asymptotics. It is fundamental mathematical constant;
$r \approx 1.075820830781 - 0.9466419207254 \, \mathrm i$ .
+
\(r \approx 1.075820830781 - 0.9466419207254 \, \mathrm i\) .
 
This precision seems to be sufficient for the applications; however, the improvement of the precision may be subject of the additional research.
 
This precision seems to be sufficient for the applications; however, the improvement of the precision may be subject of the additional research.
   
===d: Precise approximation.===
+
===h. Precise approximation.===
 
The precise approximation of the [[natural tetration]], with 14 decimal digits, is described at
 
The precise approximation of the [[natural tetration]], with 14 decimal digits, is described at
<ref name="analuxp">
+
<ref name="analuxp"/><ref name="vladi"/>,
MOC
 
</ref><ref name="vladi">
 
Vladi
 
</ref>. is this text seen?
 
is this text seen?
 
   
  +
\(u+\mathrm i v=\mathrm{tet}(x\!+\!\mathrm i y)\)
The figure shown is almost the same, as in figure 1 in the first description of the real-holomorphic tetration to base e
 
  +
  +
However, looking at the picture. it is not possible to guess, which algorithm is used, the direct implementation of the Cauchi integral
 
<ref name="analuxp">
 
<ref name="analuxp">
http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html <br>
+
http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html <br>
 
Preprint: http://www.ils.uec.ac.jp/~dima/PAPERS/2009analuxpRepri.pdf
 
Preprint: http://www.ils.uec.ac.jp/~dima/PAPERS/2009analuxpRepri.pdf
 
D.Kouznetsov. Analytic solution of F(z+1)=exp(F(z)) in complex z-plane. Mathematics of Computation, v.78 (2009), 1647-1670.
 
D.Kouznetsov. Analytic solution of F(z+1)=exp(F(z)) in complex z-plane. Mathematics of Computation, v.78 (2009), 1647-1670.
</ref>.
+
</ref>
   
  +
or the fast implementation by
However, here, the labels are added to mark the curves.
 
  +
<ref name="vladi">
  +
http://mizugadro.mydns.jp/PAPERS/2010vladie.pdf English version <br>
  +
http://mizugadro.mydns.jp/PAPERS/2009vladie.pdf Preprint, English version <br>
  +
http://mizugadro.mydns.jp/PAPERS/2009vladir.pdf Preprint, Russian version<br>
  +
D.Kouznetsov. Superexponential as special function. Vladikavkaz Mathematical Journal, 2010, v.12, issue 2, p.31-45.
  +
</ref>, as the deviation is of order of $10^{-14}$; the precision greatly exceeds the needs of the graphical illustration of the function.
  +
  +
==Similar images and motivation==
  +
The similar image appears as Figure 1 in the First publication about real-holomorphic [[natural tetration]]
  +
<ref name="analuxp"/>,
  +
but there, the logamplitud and phase are shown instead of real and imaginary parts; in certain sense this is equivalent of displacement of the map to the right for unity.
  +
  +
The reason of the derailed description of so simple image is historic. Many colleagues are interested in [[history]] of physics and mathematics; and they asked me, how did I guess the asymptotic behaviour of the [[natural titration]] at \(\mathrm i \infty\). The last request was in 2013 by [[Michael Moldenhauer]]
  +
<ref>
  +
Michael Moldenhauer. Question about tetration method. Private communication, Sat, 9 Nov 2013 01:11:53 -0800 (PST).
  +
<i>.. how did you come up with the high-quality initial approximation "fit_3" mentioned in your paper about the tetrational function?
  +
</i>
  +
</ref>.
   
  +
Functions \(\mathrm{fit}_2\) and \(\mathrm{fit}_3\) above provide the key. I used to check many fits. The \(\mathrm{fit}_2\) and \(\mathrm{Fit}_3\)
Similar figure for real and imaginary parts of the functions is also available as http://mizugadro.mydns.jp/t/index.php?title=File:Analuxp01u400.jpg
 
  +
happened best to see the asymtotics.
Due to the transfer equation
 
   
  +
In order not to repeat the same explanation again and again, I load the generators and, in particular, the code that includes \(\mathrm{fit}_3\) above.
$\exp(f(z))=f(z\!+\!1)$
 
  +
One can begin with \(\mathrm{fit}_2\) and see, that the simple fit can provide the camera-ready pictures at least in vicinity of the real axis.
  +
This fit is already sufficient to see the asymptotics with naked eyes. The \(\mathrm{fit}_3\) and \(\mathrm{Fit}_3\) were arranged to confirm the guess:
  +
the better is the approximation of tetration, the closer does it approach to the asymptotics.
   
  +
After to postulate the asymptotic behaviour of the [[tetration]], it is not difficult to construct the algorithm for the precise evaluation. The [[Cauchi integral]] along the contour \(|\Re(z)|=1\) is simple straightforward way; perhaps, there exist other, even more efficient algorithms.
at moderate values of phase (smaller than $\pi$), the curves of the phase look as those for the imaginary part, displaced for -1 along the real axis; the same happen with curves for the
 
logamplitud.
 
   
  +
==[[C++]] generators of curves. picture e, the top==
==Generators of the pictures and labels==
 
  +
<pre>
===[[C++]] generator of curves in picture a===
 
<poem><nomathjax><nowiki>
 
 
#include <math.h>
 
#include <math.h>
 
#include <stdio.h>
 
#include <stdio.h>
Line 141: Line 175:
 
//char v[11000]; // v is working array
 
//char v[11000]; // v is working array
 
// printf("Output fig01a.eps\n");
 
// printf("Output fig01a.eps\n");
FILE *o;o=fopen("analuxp01a.eps","w");ado(o,364,84);
+
FILE *o;o=fopen("analuxp01e.eps","w");ado(o,364,84);
fprintf(o,"202 42 translate\n 20 20 scale\n");
+
fprintf(o,"182 42 translate\n 20 20 scale\n");
   
 
//DB sy=4.3/sinh(.04*N/2.);
 
//DB sy=4.3/sinh(.04*N/2.);
 
DB sy=2/sinh(.04*N/2.);
 
DB sy=2/sinh(.04*N/2.);
DO(m,M1) X[m]=-10+.1*(m+.5);
+
DO(m,M1) X[m]=-9.+.1*(m+.5);
DO(n,N1) Y[n]=sy*sinh(.04*(n+.4-N/2));
+
DO(n,N1) Y[n]=sy*sinh(.04*(n+.5-N/2));
   
 
//for(m=-10;m<9;m++) {M(m,-4)L(m,4)}
 
//for(m=-10;m<9;m++) {M(m,-4)L(m,4)}
for(m=-10;m<9;m++) {M(m,-2)L(m,2)}
+
for(m=-9;m<10;m++) {M(m,-2)L(m,2)}
for(n=-2;n<3;n++) {M(-10,n)L(8,n)} fprintf(o,".006 W 0 0 0 RGB S\n");
+
for(n=-2;n<3;n++) {M(-9,n)L(9,n)} fprintf(o,".006 W 0 0 0 RGB S\n");
   
 
DO(m,M1)DO(n,N1){
 
DO(m,M1)DO(n,N1){
Line 159: Line 193:
 
//for(m=96;m<106;m++){x=X[m];
 
//for(m=96;m<106;m++){x=X[m];
 
//for(m=95;m<106;m++){x=X[m];
 
//for(m=95;m<106;m++){x=X[m];
for(m=90;m<100;m++){x=X[m];
+
for(m=80;m<90;m++){x=X[m];
 
DO(n,N1){y=Y[n]; z=z_type(x,y);
 
DO(n,N1){y=Y[n]; z=z_type(x,y);
c=z+1.;
+
// c=z+1.;
F[m*N1+n]=c; p=Re(c); q=Im(c);
+
F[m*N1+n]=z+1.; p=Re(z); q=Im(z);
 
// if(p>-999 && p<999) g[m*N1+n]=p;
 
// if(p>-999 && p<999) g[m*N1+n]=p;
 
// if(q>-999 && q<999) f[m*N1+n]=q;
 
// if(q>-999 && q<999) f[m*N1+n]=q;
Line 168: Line 202:
 
}
 
}
   
for(m=100;m<M1;m++)
+
for(m=90;m<M1;m++)
 
DO(n,N1)
 
DO(n,N1)
 
{
 
{
 
F[m*N1+n] = exp( F[(m-10)*N1+n] );
 
F[m*N1+n] = exp( F[(m-10)*N1+n] );
 
}
 
}
for(m=89;m>=0;m--)
+
for(m=79;m>=0;m--)
 
DO(n,N1)
 
DO(n,N1)
 
{
 
{
Line 187: Line 221:
   
 
p=1;
 
p=1;
conto(o,f,w,v,X,Y,M,N, (-3*M_PI ),-5,5); fprintf(o,".04 W 1 0 1 RGB S\n");
+
conto(o,f,w,v,X,Y,M,N, (-4 ),-5,5); fprintf(o,".04 W 1 0 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( -M_PI ),-5,5); fprintf(o,".04 W 1 0 1 RGB S\n");
+
conto(o,f,w,v,X,Y,M,N, ( -3 ),-5,5); fprintf(o,".04 W 1 0 0 RGB S\n");
 
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-3.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
 
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-3.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
 
conto(o,f,w,v,X,Y,M,N, (-2. ),-2 ,2); fprintf(o,".03 W 1 0 0 RGB S\n");
 
conto(o,f,w,v,X,Y,M,N, (-2. ),-2 ,2); fprintf(o,".03 W 1 0 0 RGB S\n");
Line 200: Line 234:
 
conto(o,f,w,v,X,Y,M,N, ( 2. ),-2 ,2); fprintf(o,".03 W 0 0 1 RGB S\n");
 
conto(o,f,w,v,X,Y,M,N, ( 2. ),-2 ,2); fprintf(o,".03 W 0 0 1 RGB S\n");
 
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 2.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
 
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 2.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( M_PI ),-5,5); fprintf(o,".04 W 1 0 1 RGB S\n");
+
conto(o,f,w,v,X,Y,M,N, ( 3 ),-5,5); fprintf(o,".04 W 0 0 1 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (3*M_PI ),-5,5); fprintf(o,".04 W 1 0 1 RGB S\n");
+
conto(o,f,w,v,X,Y,M,N, ( 4 ),-5,5); fprintf(o,".04 W 0 0 1 RGB S\n");
   
conto(o,g,w,v,X,Y,M,N, (-4. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
 
conto(o,g,w,v,X,Y,M,N, (-3. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
 
 
conto(o,g,w,v,X,Y,M,N, (-2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
 
conto(o,g,w,v,X,Y,M,N, (-2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
 
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-2.+.1*n),-p,p); fprintf(o,".01 W 1 0 0 RGB S\n");
 
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-2.+.1*n),-p,p); fprintf(o,".01 W 1 0 0 RGB S\n");
Line 220: Line 252:
 
M(-10,0)L(-2,0)fprintf(o,".06 W 1 0 1 RGB S\n");
 
M(-10,0)L(-2,0)fprintf(o,".06 W 1 0 1 RGB S\n");
 
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
 
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
//system( "ggv fig01a.eps");
+
system("epstopdf analuxp01e.eps");
system("epstopdf analuxp01a.eps");
+
system( "open analuxp01e.pdf");
system( "open analuxp01a.pdf");
 
 
getchar();
 
getchar();
 
system("killall Preview");
 
system("killall Preview");
 
}
 
}
  +
</pre>
   
  +
==[[C++]] generators of curves. Picture f==
</nowiki></nomathjax></poem>
 
  +
<pre>
 
===[[C++]] generator of curves in picture b===
 
<poem><nomathjax><nowiki>
 
 
 
#include <math.h>
 
#include <math.h>
 
#include <stdio.h>
 
#include <stdio.h>
Line 251: Line 280:
 
#define Y(k) (dy*(k-K/2))
 
#define Y(k) (dy*(k-K/2))
 
printf("y_0=%6.3f y_K=%6.3f ",Y(0), Y(K));
 
printf("y_0=%6.3f y_K=%6.3f ",Y(0), Y(K));
 
   
 
int M=179,M1=M+1;
 
int M=179,M1=M+1;
Line 260: Line 288:
 
char v[M1*N1]; // v is working array
 
char v[M1*N1]; // v is working array
 
// printf("Output fig01b.eps\n");
 
// printf("Output fig01b.eps\n");
FILE *o;o=fopen("analuxp01b.eps","w");ado(o,364,84);
+
FILE *o;o=fopen("analuxp01f.eps","w");ado(o,364,84);
fprintf(o,"202 42 translate\n 20 20 scale\n");
+
fprintf(o,"182 42 translate\n 20 20 scale\n");
   
 
//DB sy=4.3/sinh(.04*N/2.);
 
//DB sy=4.3/sinh(.04*N/2.);
 
DB sy=2/sinh(.04*N/2.);
 
DB sy=2/sinh(.04*N/2.);
DO(m,M1) X[m]=-10+.1*(m+.5);
+
DO(m,M1) X[m]=-9.+.1*(m-.5);
DO(n,N1) Y[n]=sy*sinh(.04*(n-.4-N/2));
+
DO(n,N1) Y[n]=sy*sinh(.04*(n-.5-N/2));
   
 
//for(m=-10;m<9;m++) {M(m,-4)L(m,4)}
 
//for(m=-10;m<9;m++) {M(m,-4)L(m,4)}
for(m=-10;m<9;m++) {M(m,-2)L(m,2)}
+
for(m=-9;m<10;m++) {M(m,-2)L(m,2)}
for(n=-2;n<3;n++) {M(-10,n)L(8,n)} fprintf(o,".006 W 0 0 0 RGB S\n");
+
for(n=-2;n<3;n++) {M(-9,n)L(9,n)} fprintf(o,".006 W 0 0 0 RGB S\n");
   
   
Line 279: Line 307:
 
//for(m=96;m<106;m++){x=X[m];
 
//for(m=96;m<106;m++){x=X[m];
 
//for(m=95;m<106;m++){x=X[m];
 
//for(m=95;m<106;m++){x=X[m];
for(m=90;m<100;m++){x=X[m];
+
for(m=81;m<91;m++){x=X[m];
 
DO(n,N1){y=Y[n]; z=z_type(x,y);
 
DO(n,N1){y=Y[n]; z=z_type(x,y);
 
// c=z+1.;
 
// c=z+1.;
Line 289: Line 317:
 
}
 
}
   
for(m=100;m<M1;m++)
+
for(m=91;m<M1;m++)
 
DO(n,N1)
 
DO(n,N1)
 
{
 
{
 
F[m*N1+n] = exp( F[(m-10)*N1+n] );
 
F[m*N1+n] = exp( F[(m-10)*N1+n] );
 
}
 
}
for(m=89;m>=0;m--)
+
for(m=80;m>=0;m--)
 
DO(n,N1)
 
DO(n,N1)
 
{
 
{
Line 308: Line 336:
   
 
p=.8;
 
p=.8;
conto(o,f,w,v,X,Y,M,N, (-3*M_PI ),-4, 4); fprintf(o,".04 W 1 0 1 RGB S\n");
+
conto(o,f,w,v,X,Y,M,N, ( -4 ),-4, 4); fprintf(o,".04 W 1 0 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( -M_PI ),-4, 4); fprintf(o,".04 W 1 0 1 RGB S\n");
+
conto(o,f,w,v,X,Y,M,N, ( -3 ),-4, 4); fprintf(o,".04 W 1 0 0 RGB S\n");
 
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-3.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
 
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-3.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
 
conto(o,f,w,v,X,Y,M,N, (-2. ),-2 ,2); fprintf(o,".03 W 1 0 0 RGB S\n");
 
conto(o,f,w,v,X,Y,M,N, (-2. ),-2 ,2); fprintf(o,".03 W 1 0 0 RGB S\n");
Line 321: Line 349:
 
conto(o,f,w,v,X,Y,M,N, ( 2. ),-2 ,2); fprintf(o,".03 W 0 0 1 RGB S\n");
 
conto(o,f,w,v,X,Y,M,N, ( 2. ),-2 ,2); fprintf(o,".03 W 0 0 1 RGB S\n");
 
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 2.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
 
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 2.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( M_PI ),-4, 4); fprintf(o,".04 W 1 0 1 RGB S\n");
+
conto(o,f,w,v,X,Y,M,N, ( 3 ),-4, 4); fprintf(o,".04 W 0 0 1 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (3*M_PI ),-4, 4); fprintf(o,".04 W 1 0 1 RGB S\n");
+
conto(o,f,w,v,X,Y,M,N, ( 4 ),-4, 4); fprintf(o,".04 W 0 0 1 RGB S\n");
   
 
conto(o,g,w,v,X,Y,M,N, (-2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
 
conto(o,g,w,v,X,Y,M,N, (-2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
Line 338: Line 366:
 
M(-10,0)L(-2,0)fprintf(o,".04 W 1 0 1 RGB S\n");
 
M(-10,0)L(-2,0)fprintf(o,".04 W 1 0 1 RGB S\n");
 
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
 
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf analuxp01b.eps");
+
system("epstopdf analuxp01f.eps");
system( "open analuxp01b.eps");
+
system( "open analuxp01f.eps");
 
getchar();
 
getchar();
 
system("killall Preview");
 
system("killall Preview");
 
}
 
}
  +
</pre>
   
  +
==[[C++]] generators of curves. Picture g==
</nowiki></nomathjax></poem>
 
  +
<pre>
===[[C++]] generator of curves in picture c===
 
<poem><nomathjax><nowiki>
 
 
 
#include <math.h>
 
#include <math.h>
 
#include <stdio.h>
 
#include <stdio.h>
Line 358: Line 385:
 
#define Im(x) x.imag()
 
#define Im(x) x.imag()
 
#define I z_type(0.,1.)
 
#define I z_type(0.,1.)
//#include "anluxpf4c.cin"
+
//#include "f4c.cin"
 
#include "conto.cin"
 
#include "conto.cin"
 
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
 
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
Line 379: Line 406:
   
 
// printf("Output fig01c.eps\n");
 
// printf("Output fig01c.eps\n");
FILE *o;o=fopen("analuxp01c.eps","w");ado(o,364,204);
+
FILE *o;o=fopen("analuxp01g.eps","w");ado(o,364,204);
fprintf(o,"202 102 translate\n 20 20 scale\n");
+
fprintf(o,"182 102 translate\n 20 20 scale\n");
   
 
DB sy=4.3/sinh(.04*N/2.);
 
DB sy=4.3/sinh(.04*N/2.);
DO(m,M1) X[m]=-10+.1*m;
+
DO(m,M1) X[m]=-9+.1*m;
 
DO(n,N1) Y[n]=sy*sinh(.04*(n-N/2));
 
DO(n,N1) Y[n]=sy*sinh(.04*(n-N/2));
   
for(m=-10;m<9;m++) {M(m,-4)L(m,4)}
+
for(m=-9;m<10;m++) {M(m,-4)L(m,4)}
for(n=-4;n<5;n++) {M( -10,n)L(8,n)} fprintf(o,".006 W 0 0 0 RGB S\n");
+
for(n=-4;n<5;n++) {M( -9,n)L(9,n)} fprintf(o,".006 W 0 0 0 RGB S\n");
   
 
DO(m,M1)DO(n,N1){
 
DO(m,M1)DO(n,N1){
Line 393: Line 420:
 
f[m*N1+n]=9999;
 
f[m*N1+n]=9999;
 
}
 
}
for(m=5;m<20;m++){int m1; x=X[m];
+
for(m=0;m<10;m++){int m1; x=X[m];
 
DO(n,N1){y=Y[n]; z=z_type(x,y); //c=F4(z-1.);
 
DO(n,N1){y=Y[n]; z=z_type(x,y); //c=F4(z-1.);
 
if(y>.3) c=Zo+exp(Zo*(z)+r);
 
if(y>.3) c=Zo+exp(Zo*(z)+r);
Line 419: Line 446:
   
 
p=2;
 
p=2;
conto(o,f,w,v,X,Y,M,N, (-3*M_PI ),-999,999); fprintf(o,".04 W 1 0 1 RGB S\n");
+
conto(o,f,w,v,X,Y,M,N, ( -4. ),-999,999); fprintf(o,".04 W 1 0 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( -M_PI ),-999,999); fprintf(o,".04 W 1 0 1 RGB S\n");
+
conto(o,f,w,v,X,Y,M,N, ( -3. ),-999,999); fprintf(o,".04 W 1 0 0 RGB S\n");
 
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-3.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
 
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-3.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
 
conto(o,f,w,v,X,Y,M,N, (-2. ),-9 ,9); fprintf(o,".03 W 1 0 0 RGB S\n");
 
conto(o,f,w,v,X,Y,M,N, (-2. ),-9 ,9); fprintf(o,".03 W 1 0 0 RGB S\n");
Line 432: Line 459:
 
conto(o,f,w,v,X,Y,M,N, ( 2. ),-9 ,9); fprintf(o,".03 W 0 0 1 RGB S\n");
 
conto(o,f,w,v,X,Y,M,N, ( 2. ),-9 ,9); fprintf(o,".03 W 0 0 1 RGB S\n");
 
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 2.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
 
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 2.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( M_PI ),-999,999); fprintf(o,".04 W 1 0 1 RGB S\n");
+
conto(o,f,w,v,X,Y,M,N, ( 3. ),-999,999); fprintf(o,".04 W 0 0 1 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (3*M_PI ),-999,999); fprintf(o,".04 W 1 0 1 RGB S\n");
+
conto(o,f,w,v,X,Y,M,N, ( 4. ),-999,999); fprintf(o,".04 W 0 0 1 RGB S\n");
   
 
conto(o,g,w,v,X,Y,M,N, (-2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
 
conto(o,g,w,v,X,Y,M,N, (-2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
Line 450: Line 477:
 
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
 
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
 
//system( "ggv fig01c.eps");
 
//system( "ggv fig01c.eps");
system("epstopdf analuxp01c.eps");
+
system("epstopdf analuxp01g.eps");
system( "open analuxp01c.eps");
+
system( "open analuxp01g.eps");
 
getchar();
 
getchar();
 
system("killall Preview");
 
system("killall Preview");
 
}
 
}
  +
</pre>
   
  +
==[[C++]] generators of curves. Picture h==
</nowiki></nomathjax></poem>
 
 
===[[C++]] solver of the integral equation with integral Cauchi===
 
<poem><nomathjax><nowiki>
 
   
  +
// file [[analuxpf4c.cin]]
  +
<pre>
 
#include <math.h>
 
#include <math.h>
 
#include <stdio.h>
 
#include <stdio.h>
 
#include <stdlib.h>
 
#include <stdlib.h>
 
#define DB double
 
#define DB double
  +
#define DO(x,y) for(x=0;x<y;x++)
 
#include <complex.h>
 
#include <complex.h>
 
#define z_type complex<double>
 
#define z_type complex<double>
#define Re(x) (x).real()
+
#define Re(x) x.real()
#define Im(x) (x).imag()
+
#define Im(x) x.imag()
 
#define I z_type(0.,1.)
 
#define I z_type(0.,1.)
  +
#include "analuxpf4c.cin"
  +
#include "conto.cin"
  +
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
 
z_type Zo=z_type(.31813150520476413, 1.3372357014306895);
 
z_type Zo=z_type(.31813150520476413, 1.3372357014306895);
 
z_type Zc=z_type(.31813150520476413,-1.3372357014306895);
 
z_type Zc=z_type(.31813150520476413,-1.3372357014306895);
  +
int K=200,K1=K+1;
  +
DB A=10.; DB dy=2*A/K; printf("dy=%6.3f",dy);
  +
#define Y(k) (dy*(k-K/2))
  +
printf("y_0=%6.3f y_K=%6.3f ",Y(0), Y(K));
   
  +
int M=180,M1=M+1;
#define DO(x,y) for(x=0;x<y;x++)
 
  +
int N=80,N1=N+1;
#include "f3c.cin"
 
  +
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
#include"ado.cin"
 
  +
//z_type tm,tp,F[M1*N1];
#define DO(x,y) for(x=0;x<y;x++)
 
  +
z_type tm,tp,F[181*81];
#define M(x,y) fprintf(o,"%5.3f %5.3f M\n",1.*(x),1.*(y));
 
  +
char v[M1*N1]; // v is working array
#define L(x,y) fprintf(o,"%5.3f %5.3f L\n",1.*(x),1.*(y));
 
  +
// printf("Output fig01d.eps\n");
#define o(x,y) fprintf(o,"%5.3f %5.3f o\n",1.*(x),1.*(y));
 
  +
FILE *o;o=fopen("analuxp01h.eps","w");ado(o,364,204);
  +
fprintf(o,"182 102 translate\n 20 20 scale\n");
   
  +
DB sy=4.3/sinh(.04*N/2.);
int main(){ int j,k,m,n; DB x,y, u, t; z_type z,c,d, cu,cd;
 
  +
DO(m,M1) X[m]=-9.+.1*m;
#include "GLxw2048.inc"
 
  +
DO(n,N1) Y[n]=sy*sinh(.04*(n-N/2));
int K=NPO; DB A=24.; printf("K=%3d A=%3.1f\n",K,A);
 
int J=K-1;
 
// z_type E[K],F[K],G[K],H[K];
 
z_type
 
E[2048],
 
F[2048],
 
G[2048],
 
H[2048];
 
   
  +
for(m=-9;m<10;m++) {M(m,-4)L(m,4)}
printf( "plot in analuxp0first.eps\n");
 
  +
for(n=-4;n<5;n++) {M( -9,n)L(9,n)} fprintf(o,".006 W 0 0 0 RGB S\n");
FILE *o;o=fopen("analuxp0first.eps","w");ado(o,484,32);
 
fprintf(o,"242 16 translate\n 10 10 scale\n");
 
for(j=-10;j<11;j+=1){M(j,-1.5)L(j,1.5);}
 
M(-10 , 1)L(10 , 1);
 
M(-10 ,-1)L(10 ,-1); fprintf(o,".006 W S\n");
 
M(-10.1,0)L(10.1,0); fprintf(o,".02 W S\n");
 
fprintf(o,".01 W S\n 1 setlinejoin\n");
 
   
DO(n,K){y=GLx[n]*A;
 
if(y<-3) E[n]=F[n]=G[n]=Zc;
 
else {if(y>3) E[n]=F[n]=G[n]=Zo;
 
else { F[n]=c=f3(z_type(0.,y));
 
E[n]=log(c);
 
G[n]=exp(c);
 
}
 
}
 
}
 
DO(k,K){y=GLx[k]*A; u=Re(F[k]);if(k==0)M(y,u)else L(y,u)}
 
DO(k,K){y=GLx[k]*A; u=Im(F[k]);if(k==0)M(y,u)else L(y,u)} fprintf(o,".08 W 1 .4 1 RGB S\n");
 
   
//DO(n,K/2)
+
DO(m,M1)DO(n,N1){
  +
g[m*N1+n]=9999;
for(n=0;n<K;n+=2)
 
  +
f[m*N1+n]=9999;
{ j=J-n; y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n);
 
  +
}
DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );}
 
  +
//for(m=96;m<106;m++){x=X[m];
cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) );
 
  +
//for(m=90;m<100;m++){x=X[m];
cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) );
 
  +
for(m=86;m<96;m++){x=X[m];
c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd;
 
if(abs(n-K/2)<4)printf("%3d %6.3f %9.6f %9.6f %9.6f %9.6f\n",n,y,Re(F[n]),Im(F[n]),Re(c),Im(c));
+
DO(n,N1){y=Y[n]; z=z_type(x,y);
E[n]=log(c); E[j]=conj(E[n]);
+
c=F4(z);
F[n]=c; F[j]=conj(c);
+
F[m*N1+n]=c; p=Re(c); q=Im(c);
G[n]=exp(c); G[j]=conj(G[n]);}
+
if(p>-999 && p<999) g[m*N1+n]=p;
  +
if(q>-999 && q<999) f[m*N1+n]=q;
  +
}
  +
}
   
  +
for(m=96;m<M1;m++)
DO(k,K){y=GLx[k]*A; u=Re(F[k]);if(k==0)M(y,u)else L(y,u)}
 
  +
DO(n,N1)
DO(k,K){y=GLx[k]*A; u=Im(F[k]);if(k==0)M(y,u)else L(y,u)} fprintf(o,".06 W 1 0 0 RGB S\n");
 
  +
{
  +
F[m*N1+n] = exp( F[(m-10)*N1+n] );
  +
}
  +
for(m=85;m>=0;m--)
  +
DO(n,N1)
  +
{
  +
F[m*N1+n] = log( F[(m+10)*N1+n] );
  +
}
   
DO(n,K) H[n]=F[n];
+
DO(m,M1)
//DO(n,K/2)
+
DO(n,N1){
  +
c=F[m*N1+n]; p=Re(c); q=Im(c);
for(n=1;n<K;n+=2)
 
  +
if(p>-999 && p<999) g[m*N1+n]=p;
{ j=J-n; y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n);
 
  +
if(q>-999 && q<999) f[m*N1+n]=q;
DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );}
 
  +
}
cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) );
 
cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) );
 
c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd;
 
if(abs(n-K/2)<4)printf("%3d %6.3f %9.6f %9.6f %9.6f %9.6f\n",n,y,Re(F[n]),Im(F[n]),Re(c),Im(c));
 
E[n]=log(c); E[j]=conj(E[n]);
 
F[n]=c; F[j]=conj(c);
 
G[n]=exp(c); G[j]=conj(G[n]);}
 
   
  +
p=2;
DO(k,K){y=GLx[k]*A; u=Re(F[k]);if(k==0)M(y,u)else L(y,u)}
 
DO(k,K){y=GLx[k]*A; u=Im(F[k]);if(k==0)M(y,u)else L(y,u)} fprintf(o,".04 W 0 1 0 RGB S\n");
+
conto(o,f,w,v,X,Y,M,N, (-4 ),-999,999); fprintf(o,".04 W 1 0 0 RGB S\n");
  +
conto(o,f,w,v,X,Y,M,N, ( -3 ),-999,999); fprintf(o,".04 W 1 0 0 RGB S\n");
  +
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-3.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
  +
conto(o,f,w,v,X,Y,M,N, (-2. ),-9 ,9); fprintf(o,".03 W 1 0 0 RGB S\n");
  +
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-2.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
  +
conto(o,f,w,v,X,Y,M,N, (-1. ),-9 ,9); fprintf(o,".03 W 1 0 0 RGB S\n");
  +
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-1.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
  +
conto(o,f,w,v,X,Y,M,N, (0. ),-999,999); fprintf(o,".02 W 0 0 0 RGB S\n");
  +
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( .1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
  +
conto(o,f,w,v,X,Y,M,N, ( 1. ),-9 ,9); fprintf(o,".03 W 0 0 1 RGB S\n");
  +
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 1.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
  +
conto(o,f,w,v,X,Y,M,N, ( 2. ),-9 ,9); fprintf(o,".03 W 0 0 1 RGB S\n");
  +
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 2.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
  +
conto(o,f,w,v,X,Y,M,N, ( 3 ),-99,99); fprintf(o,".04 W 0 0 1 RGB S\n");
  +
conto(o,f,w,v,X,Y,M,N, ( 4 ),-99,99); fprintf(o,".04 W 0 0 1 RGB S\n");
  +
// conto(o,f,w,v,X,Y,M,N, ( M_PI ),-99,99); fprintf(o,".04 W 1 0 1 RGB S\n");
  +
// conto(o,f,w,v,X,Y,M,N, (3*M_PI ),-99,99); fprintf(o,".04 W 1 0 1 RGB S\n");
   
  +
conto(o,g,w,v,X,Y,M,N, (-2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
 
  +
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-2.+.1*n),-p,p); fprintf(o,".01 W 1 0 0 RGB S\n");
//system( "ggv fig0first.eps");
 
  +
conto(o,g,w,v,X,Y,M,N, (-1. ),-3,3); fprintf(o,".03 W 0 0 0 RGB S\n");
system("epstopdf analuxp0first.eps");
 
  +
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-1.+.1*n),-p,p); fprintf(o,".01 W 1 0 0 RGB S\n");
system( "open analuxp0first.pdf");
 
  +
conto(o,g,w,v,X,Y,M,N, (0. ),-99,99); fprintf(o,".03 W 0 0 0 RGB S\n");
 
  +
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, ( .1*n),-p,p); fprintf(o,".01 W 0 0 1 RGB S\n");
printf("plot in analuxp0test.eps\n");
 
  +
conto(o,g,w,v,X,Y,M,N, ( 1. ),-3,3); fprintf(o,".03 W 0 0 0 RGB S\n");
o=fopen("analuxp0test.eps","w");ado(o,484,52);
 
  +
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, ( 1.+.1*n),-p,p); fprintf(o,".01 W 0 0 1 RGB S\n");
fprintf(o,"242 16 translate\n 10 10 scale\n");
 
  +
conto(o,g,w,v,X,Y,M,N, ( 2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
for(j=-10;j<11;j+=1){M(j,-1.5)L(j,1.5);}
 
  +
conto(o,g,w,v,X,Y,M,N, ( 3. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
M(-10 , 1)L(10 , 1);
 
M(-10 ,-1)L(10 ,-1); fprintf(o,".006 W S\n");
+
conto(o,g,w,v,X,Y,M,N, ( 4. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
M(-10.1,0)L(10.1,0); fprintf(o,".01 W S\n 1 setlinejoin\n");
 
 
DO(k,K){y=GLx[k]*A; u=100*Re(H[k]-F[k]);if(k==0)M(y,u)else L(y,u)}
 
DO(k,K){y=GLx[k]*A; u=100*Im(H[k]-F[k]);if(k==0)M(y,u)else L(y,u)} fprintf(o,".04 W 1 0 0 RGB S\n");
 
 
DO(n,K) H[n]=F[n];
 
DO(n,K){ j=J-n; y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n);
 
DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );}
 
cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) );
 
cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) );
 
c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd;
 
if(abs(n-K/2)<4)printf("%3d %6.3f %9.6f %9.6f %9.6f %9.6f\n",n,y,Re(F[n]),Im(F[n]),Re(c),Im(c));
 
E[n]=log(c); E[j]=conj(E[n]);
 
F[n]=c; F[j]=conj(c);
 
G[n]=exp(c); G[j]=conj(G[n]);}
 
 
DO(k,K){y=GLx[k]*A; u=100*Re(H[k]-F[k]);if(k==0)M(y,u)else L(y,u)}
 
DO(k,K){y=GLx[k]*A; u=100*Im(H[k]-F[k]);if(k==0)M(y,u)else L(y,u)} fprintf(o,".03 W 0 1 0 RGB S\n");
 
 
DO(n,K) H[n]=F[n];
 
DO(n,K){ j=J-n; y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n);
 
DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );}
 
cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) );
 
cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) );
 
c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd;
 
if(abs(n-K/2)<4)printf("%3d %6.3f %9.6f %9.6f %9.6f %9.6f\n",n,y,Re(F[n]),Im(F[n]),Re(c),Im(c));
 
E[n]=log(c); E[j]=conj(E[n]);
 
F[n]=c; F[j]=conj(c);
 
G[n]=exp(c); G[j]=conj(G[n]);}
 
 
DO(k,K){y=GLx[k]*A; u=100*Re(H[k]-F[k]);if(k==0)M(y,u)else L(y,u)}
 
DO(k,K){y=GLx[k]*A; u=100*Im(H[k]-F[k]);if(k==0)M(y,u)else L(y,u)} fprintf(o,".02 W 0 0 1 RGB S\n");
 
   
  +
M(-10,0)L(-2,0)fprintf(o,".04 W 1 0 1 RGB S\n");
DO(n,K) H[n]=F[n];
 
  +
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
DO(m,64)
 
  +
//system( "ggv fig01d.eps");
for(n=0;n<K;n+=2)
 
  +
system("epstopdf analuxp01h.eps");
{ j=J-n; y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n);
 
  +
system( "open analuxp01h.eps");
DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );}
 
  +
getchar();
cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) );
 
  +
system("killall Preview");
cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) );
 
c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd;
 
if(n==K/2)printf("%3d %17.13f %17.14f %17.14f %17.14f\n",m,Re(F[n]),Im(F[n]),Re(c),Im(c));
 
E[n]=log(c); E[j]=conj(E[n]);
 
F[n]=c; F[j]=conj(c);
 
G[n]=exp(c); G[j]=conj(G[n]);}
 
 
DO(k,K){y=GLx[k]*A; u=100*Re(H[k]-F[k]);if(k==0)M(y,u)else L(y,u)}
 
DO(k,K){y=GLx[k]*A; u=100*Im(H[k]-F[k]);if(k==0)M(y,u)else L(y,u)} fprintf(o,".02 W .4 0 .4 RGB S\n");
 
 
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
 
//system( "ggv fig0test.eps");
 
system("epstopdf analuxp0test.eps");
 
system( "open analuxp0test.pdf");
 
 
o=fopen("analuxp0.dat","w");
 
DO(k,K) fprintf(o,"%4d %18.14f %18.14f\n",k,Re(F[k]),Im(F[k]));
 
fclose(o);
 
 
getchar(); system("killall Preview");
 
 
}
 
}
  +
</pre>
</nowiki></nomathjax></poem>
 
===[[C++]] generator of the input file===
 
<poem><nomathjax><nowiki>
 
#include <math.h>
 
#include <stdio.h>
 
#include <stdlib.h>
 
#define DB double
 
#define DO(x,y) for(x=0;x<y;x++)
 
int main(){ int k,n; DB x,y; FILE *oo,*o;
 
int K=2048; DB A=24.; printf("K=%3d A=%3.1f\n",K,A);
 
oo=fopen("analuxp0.dat","r");
 
o=fopen("analuxpf2048.inc","w");
 
fprintf(o,"DB A=%8.4f;\n",A);
 
fprintf(o,"int K=%4d;\n",K);
 
fprintf(o,"// perhaps, A=24, and NPO =2048; NPO is supposed to be defined in GLxw.\n");
 
fprintf(o,"z_type F[%4d]={\n",K);
 
//fscanf(oo,"%d%lf%lf",&n,&x,&y); printf("%5d %5d %17.14f %17.14f \n",n,x,y);
 
DO(k,K)
 
{
 
fscanf(oo,"%d%lf%lf",&n,&x,&y);if(k!=n){printf("%5d %5d %17.14f %17.14f ?\n",k,n,x,y);}
 
fprintf(o,"z_type(%16.14f,%16.14f)",x,y);
 
if(k<K-1) fprintf(o,",\n");
 
else fprintf(o,"};\n");
 
}
 
fclose(oo);
 
fclose(o);
 
printf("read from analuxp0.dat write analuxpf2048.inc\n");
 
printf("Perhaps, you need also analuxp10x1.cin \n");
 
}
 
 
</nowiki></nomathjax></poem>
 
   
===[[C++]] generator of curves in picture d===
+
==[[C++]] generators of curves. Picture i==
<poem><nomathjax><nowiki>
 
   
  +
<pre>
 
#include <math.h>
 
#include <math.h>
 
#include <stdio.h>
 
#include <stdio.h>
Line 660: Line 613:
 
#define Im(x) x.imag()
 
#define Im(x) x.imag()
 
#define I z_type(0.,1.)
 
#define I z_type(0.,1.)
#include "analuxpf4c.cin"
+
//#include "analuxpf4c.cin"
  +
#include "fsexp.cin"
 
#include "conto.cin"
 
#include "conto.cin"
 
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
 
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
Line 671: Line 625:
   
 
int M=180,M1=M+1;
 
int M=180,M1=M+1;
int N=80,N1=N+1;
+
int N=160,N1=N+1;
 
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
 
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
 
//z_type tm,tp,F[M1*N1];
 
//z_type tm,tp,F[M1*N1];
z_type tm,tp,F[181*81];
+
z_type tm,tp,F[181*161];
 
char v[M1*N1]; // v is working array
 
char v[M1*N1]; // v is working array
 
// printf("Output fig01d.eps\n");
 
// printf("Output fig01d.eps\n");
FILE *o;o=fopen("analuxp01d.eps","w");ado(o,364,204);
+
FILE *o;o=fopen("analuxp01i.eps","w");ado(o,364,204);
fprintf(o,"202 102 translate\n 20 20 scale\n");
+
fprintf(o,"182 102 translate\n 20 20 scale\n");
   
DB sy=4.3/sinh(.04*N/2.);
+
DB sy=4.3/sinh(.02*N/2.);
DO(m,M1) X[m]=-10+.1*m;
+
DO(m,M1) X[m]=-9.+.1*m;
DO(n,N1) Y[n]=sy*sinh(.04*(n-N/2));
+
DO(n,N1) Y[n]=sy*sinh(.02*(n-.5-N/2));
   
//for(m=-10;m<9;m++) {M(m,-4)L(m,4)}
+
for(m=-9;m<10;m++) {M(m,-4)L(m,4)}
for(m=-10;m<9;m++) {M(m,-4)L(m,4)}
+
for(n=-4;n<5;n++) {M( -9,n)L(9,n)} fprintf(o,".006 W 0 0 0 RGB S\n");
for(n=-4;n<5;n++) {M( -10,n)L(8,n)} fprintf(o,".006 W 0 0 0 RGB S\n");
 
   
   
Line 694: Line 647:
 
}
 
}
 
//for(m=96;m<106;m++){x=X[m];
 
//for(m=96;m<106;m++){x=X[m];
for(m=95;m<106;m++){x=X[m];
+
//for(m=90;m<100;m++){x=X[m];
  +
for(m=86;m<96;m++){x=X[m];
 
DO(n,N1){y=Y[n]; z=z_type(x,y);
 
DO(n,N1){y=Y[n]; z=z_type(x,y);
c=F4(z);
+
//c=F4(z);
  +
c=FSEXP(z);
 
F[m*N1+n]=c; p=Re(c); q=Im(c);
 
F[m*N1+n]=c; p=Re(c); q=Im(c);
 
if(p>-999 && p<999) g[m*N1+n]=p;
 
if(p>-999 && p<999) g[m*N1+n]=p;
Line 703: Line 658:
 
}
 
}
   
for(m=106;m<M1;m++)
+
for(m=96;m<M1;m++)
 
DO(n,N1)
 
DO(n,N1)
 
{
 
{
 
F[m*N1+n] = exp( F[(m-10)*N1+n] );
 
F[m*N1+n] = exp( F[(m-10)*N1+n] );
 
}
 
}
for(m=94;m>=0;m--)
+
for(m=85;m>=0;m--)
 
DO(n,N1)
 
DO(n,N1)
 
{
 
{
Line 722: Line 677:
   
 
p=2;
 
p=2;
conto(o,f,w,v,X,Y,M,N, (-3*M_PI ),-999,999); fprintf(o,".04 W 1 0 1 RGB S\n");
+
conto(o,f,w,v,X,Y,M,N, (-4 ),-999,999); fprintf(o,".04 W 1 0 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( -M_PI ),-999,999); fprintf(o,".04 W 1 0 1 RGB S\n");
+
conto(o,f,w,v,X,Y,M,N, ( -3 ),-999,999); fprintf(o,".04 W 1 0 0 RGB S\n");
 
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-3.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
 
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-3.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
 
conto(o,f,w,v,X,Y,M,N, (-2. ),-9 ,9); fprintf(o,".03 W 1 0 0 RGB S\n");
 
conto(o,f,w,v,X,Y,M,N, (-2. ),-9 ,9); fprintf(o,".03 W 1 0 0 RGB S\n");
Line 735: Line 690:
 
conto(o,f,w,v,X,Y,M,N, ( 2. ),-9 ,9); fprintf(o,".03 W 0 0 1 RGB S\n");
 
conto(o,f,w,v,X,Y,M,N, ( 2. ),-9 ,9); fprintf(o,".03 W 0 0 1 RGB S\n");
 
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 2.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
 
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 2.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( M_PI ),-99,99); fprintf(o,".04 W 1 0 1 RGB S\n");
+
conto(o,f,w,v,X,Y,M,N, ( 3 ),-99,99); fprintf(o,".04 W 0 0 1 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (3*M_PI ),-99,99); fprintf(o,".04 W 1 0 1 RGB S\n");
+
conto(o,f,w,v,X,Y,M,N, ( 4 ),-99,99); fprintf(o,".04 W 0 0 1 RGB S\n");
  +
// conto(o,f,w,v,X,Y,M,N, ( M_PI ),-99,99); fprintf(o,".04 W 1 0 1 RGB S\n");
  +
// conto(o,f,w,v,X,Y,M,N, (3*M_PI ),-99,99); fprintf(o,".04 W 1 0 1 RGB S\n");
   
 
conto(o,g,w,v,X,Y,M,N, (-2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
 
conto(o,g,w,v,X,Y,M,N, (-2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
Line 753: Line 710:
 
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
 
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
 
//system( "ggv fig01d.eps");
 
//system( "ggv fig01d.eps");
system("epstopdf analuxp01d.eps");
+
system("epstopdf analuxp01i.eps");
system( "open analuxp01d.eps");
+
system( "open analuxp01i.eps");
 
getchar();
 
getchar();
 
system("killall Preview");
 
system("killall Preview");
 
}
 
}
  +
</pre>
</nowiki></nomathjax></poem>
 
   
===[[Latex]] generator of labels===
+
==[[Latex]] generator of labels==
  +
<poem><nomathjax><nowiki>
 
  +
<pre>
 
\documentclass[12pt]{article}
 
\documentclass[12pt]{article}
 
\usepackage{geometry}
 
\usepackage{geometry}
Line 780: Line 738:
 
\sx{1.}{\begin{picture}(370,80)
 
\sx{1.}{\begin{picture}(370,80)
 
%\put(5,5){\includegraphics{fig01a}}
 
%\put(5,5){\includegraphics{fig01a}}
\put(6,6){\includegraphics{analuxp01a}}
+
\put(6,6){\includegraphics{analuxp01e}}
\put(12,60){\sx{3}{a}}
+
\put(11,71){\sx{2}{e}}
 
\put( 0,82){\sx{1.2}{$y$}}
 
\put( 0,82){\sx{1.2}{$y$}}
 
\put( 0,63){\sx{1.1}{$1$}}
 
\put( 0,63){\sx{1.1}{$1$}}
Line 796: Line 754:
 
\put(346,-2){\sx{1.1}{$8$}}
 
\put(346,-2){\sx{1.1}{$8$}}
 
\put(362,-2){\sx{1.2}{$x$}}
 
\put(362,-2){\sx{1.2}{$x$}}
  +
\put(95,52){\sx{.8}{$v\!=\!1$}}
 
\put(177,57){\sx{.8}{\rot{58}$v\!=\!1$\ero}}
+
\put(-4,36){\sx{.8}{$u\!=\!0.4$}}
  +
\put(172,24.2){\sx{.8}{\rot{32}{$u\!=\!0$}\ero}}
 
\put(190,66){\sx{.8}{$v\!=\!1$}}
+
\put(156,56){\sx{.8}{\rot{56}{$v\!=\!1$}\ero}}
\put(180,45.8){\sx{.8}{$v\!=\!0$}}
+
\put(152,24){\sx{.8}{\rot{32}{$u\!=\!0$}\ero}}
  +
  +
\put(21,63){\sx{.8}{$v\!=\!1.4$}}
  +
  +
\put(77,52){\sx{.8}{$v\!=\!1$}}
  +
%\put(169,85.6){\sx{.8}{\rot{0.}{$v\!=\!2$}\ero}}
  +
\put(169,65.6){\sx{.8}{\rot{0.}{$v\!=\!1$}\ero}}
  +
\put(161,45.6){\sx{.8}{\rot{0.}{$v\!=\!0$}\ero}}
  +
%\put(170,25){\sx{.8}{\rot{0.}{$v\!=\!-1$}\ero}}
  +
\put(192,38){\sx{.8}{\rot{90}{$u\!=\!1$}\ero}}
  +
\put(206,38){\sx{.8}{\rot{90}{$u\!=\!2$}\ero}}
 
\end{picture}}
 
\end{picture}}
   
 
\sx{1.}{\begin{picture}(370,96)
 
\sx{1.}{\begin{picture}(370,96)
\put( 6,6){\includegraphics{analuxp01b}}
+
\put( 6,6){\includegraphics{analuxp01f}}
\put(12,60){\sx{3}{b}}
+
\put(11,71){\sx{2}{f}}
 
\put( 0,82){\sx{1.2}{$y$}}
 
\put( 0,82){\sx{1.2}{$y$}}
 
\put( 0,63){\sx{1.1}{$1$}}
 
\put( 0,63){\sx{1.1}{$1$}}
Line 820: Line 788:
 
\put(346,-2){\sx{1.1}{$8$}}
 
\put(346,-2){\sx{1.1}{$8$}}
 
\put(362,-2){\sx{1.2}{$x$}}
 
\put(362,-2){\sx{1.2}{$x$}}
  +
\multiput(40,66)(90,21){2}{\sx{.8}{$v\!=\!1.4$}}
 
\multiput(93,77)(-90,-21){1}{\sx{.8}{$u\!=\!1.2$}}
+
\put(-4,36){\sx{.8}{$u\!=\!0.4$}}
\multiput(183,83)(-90,-21){2}{\sx{.8}{$v\!=\!1.2$}}
+
\multiput(20,66)(90,21){2}{\sx{.8}{$v\!=\!1.4$}}
\multiput(185,73)(-90,-21){2}{\sx{.8}{$v\!=\!1$}}
+
\multiput(73,77)(-90,-21){1}{\sx{.8}{$u\!=\!0.4$}}
\put(184,46){\sx{.8}{$v\!=\!0$}}
+
\multiput(163,86)(-90,-21){2}{\sx{.8}{$v\!=\!1.2$}}
\put(184,20){\sx{.8}{$v\!=\!-1$}}
+
\multiput(165,73)(-90,-21){2}{\sx{.8}{$v\!=\!1$}}
\put(176,21){\sx{.8}{\rot{42}{$u\!=\!0$}\ero}}
+
\put(164,46){\sx{.8}{$v\!=\!0$}}
\put(211,39){\sx{.8}{\rot{90}{$u\!=\!1$}\ero}}
+
\put(164,20){\sx{.8}{$v\!=\!-1$}}
\multiput(4,34)(90,-21){2}{\sx{.8}{$u\!=\!0.4$}}
+
\multiput(157,21)(90,-20.6){2}{\sx{.8}{\rot{46}{$u\!=\!0$}\ero}}
\multiput(38,26)(90,-21){1}{\sx{.8}{$v\!=\!-1.4$}}
+
\put(191,39){\sx{.8}{\rot{90}{$u\!=\!1$}\ero}}
  +
\multiput(74,13)(90,-21){1}{\sx{.8}{$u\!=\!0.4$}}
  +
\multiput(18,26)(90,-21){1}{\sx{.8}{$v\!=\!-1.4$}}
 
\end{picture}}
 
\end{picture}}
   
 
\sx{1.}{\begin{picture}(366,176)
 
\sx{1.}{\begin{picture}(366,176)
\put( 6,-14){\includegraphics{analuxp01c}}
+
\put( 6,-14){\includegraphics{analuxp01g}}
\put(35,153){\sx{1.}{$u\!+\!\mathrm i v \approx L\approx 0.3+1.3\mathrm i$}}
+
\put(35,153){\sx{1.}{$u\!+\!\mathrm i v \!\approx\! L\!\approx\! 0.3\!+\!1.3\mathrm i$}}
\put(33,13){\sx{1.}{$u\!+\!\mathrm i v \approx L^*\approx 0.3-1.3\mathrm i$}}
+
\put(33,13){\sx{1.}{$u\!+\!\mathrm i v \!\approx\! L^*\!\approx\! 0.3\!-\!1.3\mathrm i$}}
\put(12,140){\sx{3}{c}}
+
\put(11,152){\sx{2}{g}}
 
\put( 0,164){\sx{1.2}{$y$}}
 
\put( 0,164){\sx{1.2}{$y$}}
 
\put( 0,144){\sx{1.1}{$3$}}
 
\put( 0,144){\sx{1.1}{$3$}}
Line 855: Line 825:
 
\put(346,-2){\sx{1.1}{$8$}}
 
\put(346,-2){\sx{1.1}{$8$}}
 
\put(362,-2){\sx{1.2}{$x$}}
 
\put(362,-2){\sx{1.2}{$x$}}
\multiput(271,159)(-90,-21){4}{\sx{.8}{$u\!=\!0.4$}}
 
\multiput(271,147)(-90,-21){3}{\sx{.8}{$v\!=\!1.2$}}
 
\multiput(185,113)(90,21){2}{\sx{.8}{$v\!=\!1$}}
 
%\put(184,86){\sx{.8}{$v\!=\!0$}}
 
\multiput(184,60)(90,-21){2}{\sx{.8}{$v\!=\!-1$}}
 
\multiput(176,61)(89.4,-21){3}{\sx{.8}{\rot{42}{$u\!=\!0$}\ero}}
 
   
\put(211,79){\sx{.8}{\rot{90}{$u\!=\!1$}\ero}}
+
\multiput(261,160)(-89,-20.8){4}{\sx{.8}{$u\!=\!0.4$}}
\multiput(40,106)(90,21){4}{\sx{.8}{$v\!=\!1.4$}}
+
\multiput(251,147)(-90,-20.8){3}{\sx{.8}{$v\!=\!1.2$}}
\multiput(40,66)(90,-21){4}{\sx{.8}{$v\!=\!-1.4$}}
+
\multiput(165,113)(90,20.8){3}{\sx{.8}{$v\!=\!1$}}
\multiput(5,75)(90,-21){4}{\sx{.8}{$u\!=\!0.4$}}
+
%\put(164,86){\sx{.8}{$v\!=\!0$}}
  +
\multiput(164,60)(90,-20.8){3}{\sx{.8}{$v\!=\!-1$}}
  +
\multiput(156,61)(90,-20.8){3}{\sx{.8}{\rot{44}{$u\!=\!0$}\ero}}
  +
\put(191,79){\sx{.8}{\rot{90}{$u\!=\!1$}\ero}}
  +
\multiput(16,106)(90,20.8){4}{\sx{.8}{$v\!=\!1.4$}}
  +
\multiput(16,64)(90,-20.8){3}{\sx{.8}{$v\!=\!-1.4$}}
  +
\multiput(75,54)(90,-20.8){3}{\sx{.8}{$u\!=\!0.4$}}
  +
 
\end{picture}}
 
\end{picture}}
   
 
\sx{1.}{\begin{picture}(366,176)
 
\sx{1.}{\begin{picture}(366,176)
\put( 6,-14){\includegraphics{analuxp01d}}
+
\put( 6,-14){\includegraphics{analuxp01i}}
\put(35,153){\sx{1.}{$u\!+\!\mathrm i v \approx L\approx 0.3+1.3\mathrm i$}}
+
\put(35,153){\sx{1.}{$u\!+\!\mathrm i v \!\approx\! L\!\approx\! 0.3\!+\!1.3\mathrm i$}}
\put(33,13){\sx{1.}{$u\!+\!\mathrm i v \approx L^*\approx 0.3-1.3\mathrm i$}}
+
\put(33,13){\sx{1.}{$u\!+\!\mathrm i v \!\approx\! L^*\!\approx\! 0.3\!-\!1.3\mathrm i$}}
\put(12,140){\sx{3}{d}}
+
\put(11,151){\sx{2}{h}}
 
\put( 0,162){\sx{1.2}{$y$}}
 
\put( 0,162){\sx{1.2}{$y$}}
 
\put( 0,144){\sx{1.1}{$3$}}
 
\put( 0,144){\sx{1.1}{$3$}}
Line 891: Line 862:
 
\put(346,-2){\sx{1.1}{$8$}}
 
\put(346,-2){\sx{1.1}{$8$}}
 
\put(362,-2){\sx{1.2}{$x$}}
 
\put(362,-2){\sx{1.2}{$x$}}
  +
\multiput(271,159)(-90,-21){4}{\sx{.8}{$u\!=\!0.4$}}
 
\multiput(271,147)(-90,-21){3}{\sx{.8}{$v\!=\!1.2$}}
+
\multiput(261,160)(-89,-20.8){4}{\sx{.8}{$u\!=\!0.4$}}
\multiput(185,113)(90,21){2}{\sx{.8}{$v\!=\!1$}}
+
%\multiput(251,159)(-90,-20.8){4}{\sx{.8}{$u\!=\!0.4$}}
\put(184,86){\sx{.8}{$v\!=\!0$}}
+
\multiput(251,147)(-90,-20.8){3}{\sx{.8}{$v\!=\!1.2$}}
\multiput(184,60)(90,-21){2}{\sx{.8}{$v\!=\!-1$}}
+
\multiput(165,113)(90,20.8){3}{\sx{.8}{$v\!=\!1$}}
\multiput(176,61)(89.5,-21){3}{\sx{.8}{\rot{42}{$u\!=\!0$}\ero}}
+
\put(164,86){\sx{.8}{$v\!=\!0$}}
\put(211,79){\sx{.8}{\rot{90}{$u\!=\!1$}\ero}}
+
\multiput(164,60)(90,-20.8){3}{\sx{.8}{$v\!=\!-1$}}
\multiput(40,106)(90,21){4}{\sx{.8}{$v\!=\!1.4$}}
+
\multiput(156,61)(90,-20.8){3}{\sx{.8}{\rot{44}{$u\!=\!0$}\ero}}
\multiput(40,66)(90,-21){4}{\sx{.8}{$v\!=\!-1.4$}}
+
\put(191,79){\sx{.8}{\rot{90}{$u\!=\!1$}\ero}}
\multiput(5,75)(90,-21){4}{\sx{.8}{$u\!=\!0.4$}}
+
\multiput(16,106)(90,20.8){4}{\sx{.8}{$v\!=\!1.4$}}
  +
\multiput(16,64)(90,-20.8){3}{\sx{.8}{$v\!=\!-1.4$}}
  +
\multiput(75,54)(90,-20.8){3}{\sx{.8}{$u\!=\!0.4$}}
   
 
\end{picture}}
 
\end{picture}}
 
\end{document}
 
\end{document}
  +
</pre>
</nowiki></nomathjax></poem>
 
   
 
==References==
 
==References==
  +
{{ref}}
   
  +
{{fer}}
<references/>
 
  +
==Keywords==
  +
«[[Exponential]]»,
  +
<b>«[[Natural tetration]]»</b>,
  +
«[[Superfunction]]»,
  +
«[[Superfunctions]]»,
  +
«[[Tetration]]»,
   
  +
«[[Суперфункции]]»,
  +
  +
[[Category:Approximation]]
  +
[[Category:Book]]
  +
[[Category:BookMap]]
 
[[Category:Complex map]]
 
[[Category:Complex map]]
[[Category:Fit]]
 
[[Category:Natural tetration]]
 
[[Category:Tetration]]
 
 
[[Category:C++]]
 
[[Category:C++]]
  +
[[Category:History]]
 
[[Category:Latex]]
 
[[Category:Latex]]
[[Category:Book]]
+
[[Category:Michael Moldenhauer]]
  +
[[Category:Natural tеtration]]
  +
[[Category:Tetration]]

Revision as of 20:48, 10 December 2025


Complex maps of various approximations \(f\) of natural tetration.

\(u+\mathrm i v=f(x\!+\!\mathrm i y)\)

Note, that in the Book Superfunctions[1], 2020 (Russian version: Суперфункции[2], 2014), the similar map is shown in a different way, \(u\) means logamplitude and \(v\) means phase there, the lines are shown for

\(\exp(u+\mathrm i v)=f(x\!+\!\mathrm i y)\).

I do not know which notation is better.

Description of curves

e: Linear approximation by Gusmad

This is approximation, linear in the ramge \(-1 < \Re(z) \le 0\) suggested in 2006 by M.H.Hooshmand

[3]

\(u+\mathrm i v=\mathrm{uxp}(x\!+\!\mathrm i y)\)

\(\mathrm{uxp}(z)=\!\left\{\!\! \begin{array}{ccccc cc} \ln\!\big({\rm uxp}(z\!+\!1)\big)~&~{\rm at}~&~ \!&\! \!&\! \Re(z) \!&\! \le \!&\! -1 \\ z + 1 ~&{~\rm at}~&~ -1 \!&\! < \!&\! \Re(z) \!&\! \le \!&\! 0 \\ \exp\!\big({\rm uxp}(z\!-\!1)\big)~&{~\rm at}~&~ 0 \!&\! < \!&\! \Re(z) \!& \end{array} \right.\)

f: Approximation for moderate values of imaginary part of the argument

\(\mathrm {Fit}_{3}(z) = \left\{\!\! \begin{array}{ccccc cc} \ln\!\big({\rm Fit}_{3}(z\!+\!1)\big)~&~{~\rm at~}~&~ \!&\! \!&\! \Re(z) \!&\! \le \!&\! -1 \\ \mathrm{fit}_{3}(z) ~&~{~\rm at~}~& -1 \!&\! < \!&\! \Re(z) \!&\! \le \!&\! 0 \\ \exp\!\big({\rm Fit}_{3}(z\!-\!1)\big)~&~{~\rm at~}~&~ 0 \!&\! < \!&\! \Re(z) \!& \end{array} \right. \)

where

\(\displaystyle \mathrm{fit}_3(z) \!=\! 0.6\!~\mathrm{fit}_{2}(z)+0.4\!~\ln\big( \mathrm{fit}_{2}(z+1)\big) \)

\(\displaystyle \mathrm{fit}_2(z) \!=\! \ln(2\!+\!z) + (1\!+\!z)\left( 1 + \frac{z}{2}\exp\!\Big((z\!-\!1)s_2(z)\Big) \Big(\!\mathrm e\! -2\! +\! \ln\frac{4}{3} \Big) - \ln 2 \right)\)

\( s_2(z) = \exp\!\Big(\exp(z-2.51)\Big)-0.6+0.08(z\!+\!1) \)

g. Approximation for large values of imaginary part of the argument

In the upper half plane, say, \(y>1/2\), the \(\mathrm{fit}_6\) is shown,

\(u+\mathrm i v =\mathrm{fit}_6(x\!+\!\mathrm i y)\)

where

\(\mathrm{fit}_6(z) = \left\{ \begin{array} ~ L+\exp(kz+r) ~, ~ \Re(z)<-8\\ \exp\Big(\mathrm{fit}_6(z\!-\!1)\Big)~,~ \Re(z)\ge -8 \end{array} \right.\)

and

\(u+\mathrm i v =\mathrm{fit}_6(x\!-\!\mathrm i y)^*\)

in the lower half plane, say, \(y<-1/2\).

The strip of intermediate values \(|y|<1/2\) is left empty.

In formula above, \(L\approx 0.31813150520476413 + 1.3372357014306895 \,\mathrm i\) is fixed point of logarithm, \(L=\ln(L)\). For Natural tetration, the increment \(k=L\). Parameter \(r\) provides the match of the two asymptotics. It is fundamental mathematical constant; \(r \approx 1.075820830781 - 0.9466419207254 \, \mathrm i\) . This precision seems to be sufficient for the applications; however, the improvement of the precision may be subject of the additional research.

h. Precise approximation.

The precise approximation of the natural tetration, with 14 decimal digits, is described at [4][5],

\(u+\mathrm i v=\mathrm{tet}(x\!+\!\mathrm i y)\)

However, looking at the picture. it is not possible to guess, which algorithm is used, the direct implementation of the Cauchi integral [4]

or the fast implementation by [5], as the deviation is of order of $10^{-14}$; the precision greatly exceeds the needs of the graphical illustration of the function.

Similar images and motivation

The similar image appears as Figure 1 in the First publication about real-holomorphic natural tetration [4], but there, the logamplitud and phase are shown instead of real and imaginary parts; in certain sense this is equivalent of displacement of the map to the right for unity.

The reason of the derailed description of so simple image is historic. Many colleagues are interested in history of physics and mathematics; and they asked me, how did I guess the asymptotic behaviour of the natural titration at \(\mathrm i \infty\). The last request was in 2013 by Michael Moldenhauer [6].

Functions \(\mathrm{fit}_2\) and \(\mathrm{fit}_3\) above provide the key. I used to check many fits. The \(\mathrm{fit}_2\) and \(\mathrm{Fit}_3\) happened best to see the asymtotics.

In order not to repeat the same explanation again and again, I load the generators and, in particular, the code that includes \(\mathrm{fit}_3\) above. One can begin with \(\mathrm{fit}_2\) and see, that the simple fit can provide the camera-ready pictures at least in vicinity of the real axis. This fit is already sufficient to see the asymptotics with naked eyes. The \(\mathrm{fit}_3\) and \(\mathrm{Fit}_3\) were arranged to confirm the guess: the better is the approximation of tetration, the closer does it approach to the asymptotics.

After to postulate the asymptotic behaviour of the tetration, it is not difficult to construct the algorithm for the precise evaluation. The Cauchi integral along the contour \(|\Re(z)|=1\) is simple straightforward way; perhaps, there exist other, even more efficient algorithms.

C++ generators of curves. picture e, the top

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
#include <complex.h>
#define z_type complex<double>
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
//#include "uxp.cin"
//#include "advacon.cin"
#include "conto.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
//z_type Zo=z_type(.31813150520476413, 1.3372357014306895);
//z_type Zc=z_type(.31813150520476413,-1.3372357014306895);
int K=200,K1=K+1;
DB A=10.;  DB dy=2*A/K;  printf("dy=%6.3f",dy);
#define Y(k) (dy*(k-K/2))
printf("y_0=%6.3f y_K=%6.3f ",Y(0), Y(K));

int M=180,M1=M+1;
int N=50,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
// z_type tm,tp,F[M1*N1]; 
z_type tm,tp,F[9681]; 

//char v[11000]; // v is working array
// printf("Output  fig01a.eps\n");
FILE *o;o=fopen("analuxp01e.eps","w");ado(o,364,84);
fprintf(o,"182 42 translate\n 20 20 scale\n");

//DB sy=4.3/sinh(.04*N/2.);
DB sy=2/sinh(.04*N/2.);
DO(m,M1) X[m]=-9.+.1*(m+.5);
DO(n,N1) Y[n]=sy*sinh(.04*(n+.5-N/2));

//for(m=-10;m<9;m++) {M(m,-4)L(m,4)}
for(m=-9;m<10;m++) {M(m,-2)L(m,2)}
for(n=-2;n<3;n++) {M(-9,n)L(9,n)} fprintf(o,".006 W 0 0 0 RGB S\n");

DO(m,M1)DO(n,N1){
                        g[m*N1+n]=9999;
                        f[m*N1+n]=9999;
                }
//for(m=96;m<106;m++){x=X[m];
//for(m=95;m<106;m++){x=X[m];
for(m=80;m<90;m++){x=X[m];
                        DO(n,N1){y=Y[n]; z=z_type(x,y);
//                              c=z+1.;
                                F[m*N1+n]=z+1.; p=Re(z); q=Im(z);
                        //      if(p>-999 && p<999) g[m*N1+n]=p;
                        //      if(q>-999 && q<999) f[m*N1+n]=q;
                                }
                }

for(m=90;m<M1;m++)  
        DO(n,N1)
                { 
                F[m*N1+n] = exp( F[(m-10)*N1+n] ); 
                }
for(m=79;m>=0;m--)
        DO(n,N1)
                { 
                F[m*N1+n] = log( F[(m+10)*N1+n] ); 
                }

DO(m,M1)
DO(n,N1){
                c=F[m*N1+n]; p=Re(c); q=Im(c);
                if(p>-99 && p<99) g[m*N1+n]=p;
                if(q>-99 && q<99) f[m*N1+n]=q;
        }

p=1;
                  conto(o,f,w,v,X,Y,M,N, (-4 ),-5,5); fprintf(o,".04 W 1 0 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, ( -3  ),-5,5); fprintf(o,".04 W 1 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-3.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, (-2.     ),-2 ,2); fprintf(o,".03 W 1 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-2.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, (-1.     ),-2 ,2); fprintf(o,".03 W 1 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-1.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, (0.      ),-5,5); fprintf(o,".02 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (    .1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, ( 1.     ),-2 ,2); fprintf(o,".03 W 0 0 1 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 1.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, ( 2.     ),-2 ,2); fprintf(o,".03 W 0 0 1 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 2.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, ( 3   ),-5,5); fprintf(o,".04 W 0 0 1 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, ( 4  ),-5,5); fprintf(o,".04 W 0 0 1 RGB S\n");

                  conto(o,g,w,v,X,Y,M,N, (-2.     ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-2.+.1*n),-p,p); fprintf(o,".01 W 1 0 0 RGB S\n");
                  conto(o,g,w,v,X,Y,M,N, (-1.     ),-2,2); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-1.+.1*n),-p,p); fprintf(o,".01 W 1 0 0 RGB S\n");
                  conto(o,g,w,v,X,Y,M,N, (0.      ),-3,3); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (    .1*n),-p,p); fprintf(o,".01 W 0 0 1 RGB S\n");
                  conto(o,g,w,v,X,Y,M,N, ( 1.     ),-2,2); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, ( 1.+.1*n),-p,p); fprintf(o,".01 W 0 0 1 RGB S\n");
                  conto(o,g,w,v,X,Y,M,N, ( 2.     ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
                  conto(o,g,w,v,X,Y,M,N, ( 3.     ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
                  conto(o,g,w,v,X,Y,M,N, ( 4.     ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");

for(m=-10;m<9;m++) {M(m,-2.)L(m,2.)}
M(-10,0)L(-2,0)fprintf(o,".06 W 1 0 1 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf analuxp01e.eps");
system(  "open analuxp01e.pdf");
getchar();
system("killall Preview");
}

C++ generators of curves. Picture f

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
#include <complex.h>
#define z_type complex<double>
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "analuxpf3c.cin"
#include "conto.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
//z_type Zo=z_type(.31813150520476413, 1.3372357014306895);
//z_type Zc=z_type(.31813150520476413,-1.3372357014306895);
int K=200,K1=K+1;
DB A=10.;  DB dy=2*A/K;  printf("dy=%6.3f",dy);
#define Y(k) (dy*(k-K/2))
printf("y_0=%6.3f y_K=%6.3f ",Y(0), Y(K));

int M=179,M1=M+1;
int N=51,N1=N+1;
// z_type tm,tp,F[M1*N1]; does not work
z_type tm,tp,F[180*52];
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
// printf("Output  fig01b.eps\n");
FILE *o;o=fopen("analuxp01f.eps","w");ado(o,364,84);
fprintf(o,"182 42 translate\n 20 20 scale\n");

//DB sy=4.3/sinh(.04*N/2.);
DB sy=2/sinh(.04*N/2.);
DO(m,M1) X[m]=-9.+.1*(m-.5);
DO(n,N1) Y[n]=sy*sinh(.04*(n-.5-N/2));

//for(m=-10;m<9;m++) {M(m,-4)L(m,4)}
for(m=-9;m<10;m++) {M(m,-2)L(m,2)}
for(n=-2;n<3;n++) {M(-9,n)L(9,n)} fprintf(o,".006 W 0 0 0 RGB S\n");


DO(m,M1)DO(n,N1){
                        g[m*N1+n]=9999;
                        f[m*N1+n]=9999;
                }
//for(m=96;m<106;m++){x=X[m];
//for(m=95;m<106;m++){x=X[m];
for(m=81;m<91;m++){x=X[m];
                        DO(n,N1){y=Y[n]; z=z_type(x,y);
                        //      c=z+1.;
                                c=f3(z);
                                F[m*N1+n]=c; p=Re(c); q=Im(c);
                        //      if(p>-999 && p<999) g[m*N1+n]=p;
                        //      if(q>-999 && q<999) f[m*N1+n]=q;
                                }
                }

for(m=91;m<M1;m++)  
        DO(n,N1)
                { 
                F[m*N1+n] = exp( F[(m-10)*N1+n] ); 
                }
for(m=80;m>=0;m--)
        DO(n,N1)
                { 
                F[m*N1+n] = log( F[(m+10)*N1+n] ); 
                }

DO(m,M1)
DO(n,N1){
                c=F[m*N1+n]; p=Re(c); q=Im(c);
                if(p>-999 && p<999) g[m*N1+n]=p;
                if(q>-999 && q<999) f[m*N1+n]=q;
        }

p=.8;
                  conto(o,f,w,v,X,Y,M,N, ( -4 ),-4, 4); fprintf(o,".04 W 1 0 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, ( -3  ),-4, 4); fprintf(o,".04 W 1 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-3.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, (-2.     ),-2 ,2); fprintf(o,".03 W 1 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-2.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, (-1.     ),-2 ,2); fprintf(o,".03 W 1 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-1.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, (0.      ),-4, 4); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (    .1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, ( 1.     ),-2 ,2); fprintf(o,".03 W 0 0 1 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 1.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, ( 2.     ),-2 ,2); fprintf(o,".03 W 0 0 1 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 2.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, ( 3   ),-4, 4); fprintf(o,".04 W 0 0 1 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, ( 4  ),-4, 4); fprintf(o,".04 W 0 0 1 RGB S\n");

                  conto(o,g,w,v,X,Y,M,N, (-2.     ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-2.+.1*n),-p,p); fprintf(o,".01 W 1 0 0 RGB S\n");
                  conto(o,g,w,v,X,Y,M,N, (-1.     ),-1,1); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-1.+.1*n),-p,p); fprintf(o,".01 W 1 0 0 RGB S\n");
                  conto(o,g,w,v,X,Y,M,N, (0.      ),-4,4); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (    .1*n),-p,p); fprintf(o,".01 W 0 0 1 RGB S\n");
                  conto(o,g,w,v,X,Y,M,N, ( 1.     ),-1,1); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, ( 1.+.1*n),-p,p); fprintf(o,".01 W 0 0 1 RGB S\n");
                  conto(o,g,w,v,X,Y,M,N, ( 2.     ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
                  conto(o,g,w,v,X,Y,M,N, ( 3.     ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
                  conto(o,g,w,v,X,Y,M,N, ( 4.     ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");

M(-10,0)L(-2,0)fprintf(o,".04 W 1 0 1 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf analuxp01f.eps");
system(  "open analuxp01f.eps");
getchar();
system("killall Preview");
}

C++ generators of curves. Picture g

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
#include <complex.h>
#define z_type complex<double>
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
//#include "f4c.cin"
#include "conto.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
z_type Zo=z_type(.31813150520476413, 1.3372357014306895);
z_type Zc=z_type(.31813150520476413,-1.3372357014306895);
z_type T =2*M_PI/Zo;
//z_type r=z_type(1.06,-.96);
z_type r=z_type(1.075820830781, - 0.9466419207254);
int K=200,K1=K+1;
DB A=10.;  DB dy=2*A/K;  printf("dy=%6.3f",dy);
#define Y(k) (dy*(k-K/2))
printf("y_0=%6.3f y_K=%6.3f ",Y(0), Y(K));

int M=180,M1=M+1;
int N=80,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
//z_type tm,tp,F[M1*N1]; 
z_type tm,tp,F[181*81]; 

// printf("Output  fig01c.eps\n");
FILE *o;o=fopen("analuxp01g.eps","w");ado(o,364,204);
fprintf(o,"182 102 translate\n 20 20 scale\n");

DB sy=4.3/sinh(.04*N/2.);
DO(m,M1) X[m]=-9+.1*m;
DO(n,N1) Y[n]=sy*sinh(.04*(n-N/2));

for(m=-9;m<10;m++) {M(m,-4)L(m,4)}
for(n=-4;n<5;n++) {M(  -9,n)L(9,n)} fprintf(o,".006 W 0 0 0 RGB S\n");

DO(m,M1)DO(n,N1){
                        g[m*N1+n]=9999;
                        f[m*N1+n]=9999;
                }
for(m=0;m<10;m++){int m1; x=X[m];
                        DO(n,N1){y=Y[n]; z=z_type(x,y);                         //c=F4(z-1.);
                                if(y>.3)        c=Zo+exp(Zo*(z)+r);
                                else
                                if(y<-.3)       c=Zc+exp(Zc*(z)+conj(r));
                                //z_type(0.318131505204764, 1.337235701430689)
                                else goto ski;
                                // int m1;
                                for(m1=m;m1<M1;){       F[m1*N1+n]=c; p=Re(c); q=Im(c);
                                                if(p>-999 && p<999) g[m1*N1+n]=p;
                                                if(q>-999 && q<999) f[m1*N1+n]=q;
                                                c=exp(c); m1+=10;
                                            }
                                ski:;
                                }
                }
/*
DO(m,M1)
DO(n,N1){
                c=F[m*N1+n]; p=Re(c); q=Im(c);
                if(p>-999 && p<999) g[m*N1+n]=p;
                if(q>-999 && q<999) f[m*N1+n]=q;
        }
*/

p=2;
                  conto(o,f,w,v,X,Y,M,N, ( -4.  ),-999,999); fprintf(o,".04 W 1 0 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, ( -3.  ),-999,999); fprintf(o,".04 W 1 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-3.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, (-2.     ),-9 ,9); fprintf(o,".03 W 1 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-2.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, (-1.     ),-9 ,9); fprintf(o,".03 W 1 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-1.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, (0.      ),-999,999); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (    .1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, ( 1.     ),-9 ,9); fprintf(o,".03 W 0 0 1 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 1.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, ( 2.     ),-9 ,9); fprintf(o,".03 W 0 0 1 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 2.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, ( 3.   ),-999,999); fprintf(o,".04 W 0 0 1 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, ( 4.  ),-999,999); fprintf(o,".04 W 0 0 1 RGB S\n");

                  conto(o,g,w,v,X,Y,M,N, (-2.     ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-2.+.1*n),-p,p); fprintf(o,".01 W 1 0 0 RGB S\n");
                  conto(o,g,w,v,X,Y,M,N, (-1.     ),-3,3); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-1.+.1*n),-p,p); fprintf(o,".01 W 1 0 0 RGB S\n");
                  conto(o,g,w,v,X,Y,M,N, (0.      ),-999,999); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (    .1*n),-p,p); fprintf(o,".01 W 0 0 1 RGB S\n");
                  conto(o,g,w,v,X,Y,M,N, ( 1.     ),-3,3); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, ( 1.+.1*n),-p,p); fprintf(o,".01 W 0 0 1 RGB S\n");
                  conto(o,g,w,v,X,Y,M,N, ( 2.     ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
                  conto(o,g,w,v,X,Y,M,N, ( 3.     ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
                  conto(o,g,w,v,X,Y,M,N, ( 4.     ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");

//M(-10,0)L(-2,0)fprintf(o,".04 W 1 0 1 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
//system( "ggv fig01c.eps");
system("epstopdf analuxp01g.eps");
system(    "open analuxp01g.eps");
getchar();
system("killall Preview");
}

C++ generators of curves. Picture h

// file analuxpf4c.cin

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
#include <complex.h>
#define z_type complex<double>
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "analuxpf4c.cin"
#include "conto.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
z_type Zo=z_type(.31813150520476413, 1.3372357014306895);
z_type Zc=z_type(.31813150520476413,-1.3372357014306895);
int K=200,K1=K+1;
DB A=10.;  DB dy=2*A/K;  printf("dy=%6.3f",dy);
#define Y(k) (dy*(k-K/2))
printf("y_0=%6.3f y_K=%6.3f ",Y(0), Y(K));

int M=180,M1=M+1;
int N=80,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
//z_type tm,tp,F[M1*N1];
z_type tm,tp,F[181*81];
char v[M1*N1]; // v is working array
// printf("Output  fig01d.eps\n");
FILE *o;o=fopen("analuxp01h.eps","w");ado(o,364,204);
fprintf(o,"182 102 translate\n 20 20 scale\n");

DB sy=4.3/sinh(.04*N/2.);
DO(m,M1) X[m]=-9.+.1*m;
DO(n,N1) Y[n]=sy*sinh(.04*(n-N/2));

for(m=-9;m<10;m++) {M(m,-4)L(m,4)}
for(n=-4;n<5;n++) {M(  -9,n)L(9,n)} fprintf(o,".006 W 0 0 0 RGB S\n");


DO(m,M1)DO(n,N1){
                        g[m*N1+n]=9999;
                        f[m*N1+n]=9999;
                }
//for(m=96;m<106;m++){x=X[m];
//for(m=90;m<100;m++){x=X[m];
for(m=86;m<96;m++){x=X[m];
                        DO(n,N1){y=Y[n]; z=z_type(x,y);
                                c=F4(z);
                                F[m*N1+n]=c; p=Re(c); q=Im(c);
                                if(p>-999 && p<999) g[m*N1+n]=p;
                                if(q>-999 && q<999) f[m*N1+n]=q;
                                }
                }

for(m=96;m<M1;m++)  
        DO(n,N1)
                { 
                F[m*N1+n] = exp( F[(m-10)*N1+n] ); 
                }
for(m=85;m>=0;m--)
        DO(n,N1)
                { 
                F[m*N1+n] = log( F[(m+10)*N1+n] ); 
                }

DO(m,M1)
DO(n,N1){
                c=F[m*N1+n]; p=Re(c); q=Im(c);
                if(p>-999 && p<999) g[m*N1+n]=p;
                if(q>-999 && q<999) f[m*N1+n]=q;
        }

p=2;
                  conto(o,f,w,v,X,Y,M,N, (-4 ),-999,999); fprintf(o,".04 W 1 0 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, ( -3  ),-999,999); fprintf(o,".04 W 1 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-3.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, (-2.     ),-9 ,9); fprintf(o,".03 W 1 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-2.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, (-1.     ),-9 ,9); fprintf(o,".03 W 1 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-1.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, (0.      ),-999,999); fprintf(o,".02 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (    .1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, ( 1.     ),-9 ,9); fprintf(o,".03 W 0 0 1 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 1.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, ( 2.     ),-9 ,9); fprintf(o,".03 W 0 0 1 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 2.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, ( 3   ),-99,99); fprintf(o,".04 W 0 0 1 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, ( 4  ),-99,99); fprintf(o,".04 W 0 0 1 RGB S\n");
//                  conto(o,f,w,v,X,Y,M,N, ( M_PI   ),-99,99); fprintf(o,".04 W 1 0 1 RGB S\n");
//                  conto(o,f,w,v,X,Y,M,N, (3*M_PI  ),-99,99); fprintf(o,".04 W 1 0 1 RGB S\n");

                  conto(o,g,w,v,X,Y,M,N, (-2.     ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-2.+.1*n),-p,p); fprintf(o,".01 W 1 0 0 RGB S\n");
                  conto(o,g,w,v,X,Y,M,N, (-1.     ),-3,3); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-1.+.1*n),-p,p); fprintf(o,".01 W 1 0 0 RGB S\n");
                  conto(o,g,w,v,X,Y,M,N, (0.      ),-99,99); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (    .1*n),-p,p); fprintf(o,".01 W 0 0 1 RGB S\n");
                  conto(o,g,w,v,X,Y,M,N, ( 1.     ),-3,3); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, ( 1.+.1*n),-p,p); fprintf(o,".01 W 0 0 1 RGB S\n");
                  conto(o,g,w,v,X,Y,M,N, ( 2.     ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
                  conto(o,g,w,v,X,Y,M,N, ( 3.     ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
                  conto(o,g,w,v,X,Y,M,N, ( 4.     ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");

M(-10,0)L(-2,0)fprintf(o,".04 W 1 0 1 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
//system( "ggv fig01d.eps");
system("epstopdf analuxp01h.eps");
system(    "open analuxp01h.eps");
getchar();
system("killall Preview");
}

C++ generators of curves. Picture i

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
#include <complex.h>
#define z_type complex<double>
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
//#include "analuxpf4c.cin"
#include "fsexp.cin"
#include "conto.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
z_type Zo=z_type(.31813150520476413, 1.3372357014306895);
z_type Zc=z_type(.31813150520476413,-1.3372357014306895);
int K=200,K1=K+1;
DB A=10.;  DB dy=2*A/K;  printf("dy=%6.3f",dy);
#define Y(k) (dy*(k-K/2))
printf("y_0=%6.3f y_K=%6.3f ",Y(0), Y(K));

int M=180,M1=M+1;
int N=160,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
//z_type tm,tp,F[M1*N1];
z_type tm,tp,F[181*161];
char v[M1*N1]; // v is working array
// printf("Output  fig01d.eps\n");
FILE *o;o=fopen("analuxp01i.eps","w");ado(o,364,204);
fprintf(o,"182 102 translate\n 20 20 scale\n");

DB sy=4.3/sinh(.02*N/2.);
DO(m,M1) X[m]=-9.+.1*m;
DO(n,N1) Y[n]=sy*sinh(.02*(n-.5-N/2));

for(m=-9;m<10;m++) {M(m,-4)L(m,4)}
for(n=-4;n<5;n++) {M(  -9,n)L(9,n)} fprintf(o,".006 W 0 0 0 RGB S\n");


DO(m,M1)DO(n,N1){
                        g[m*N1+n]=9999;
                        f[m*N1+n]=9999;
                }
//for(m=96;m<106;m++){x=X[m];
//for(m=90;m<100;m++){x=X[m];
for(m=86;m<96;m++){x=X[m];
                        DO(n,N1){y=Y[n]; z=z_type(x,y);
                                //c=F4(z);
                                c=FSEXP(z);
                                F[m*N1+n]=c; p=Re(c); q=Im(c);
                                if(p>-999 && p<999) g[m*N1+n]=p;
                                if(q>-999 && q<999) f[m*N1+n]=q;
                                }
                }

for(m=96;m<M1;m++)  
        DO(n,N1)
                { 
                F[m*N1+n] = exp( F[(m-10)*N1+n] ); 
                }
for(m=85;m>=0;m--)
        DO(n,N1)
                { 
                F[m*N1+n] = log( F[(m+10)*N1+n] ); 
                }

DO(m,M1)
DO(n,N1){
                c=F[m*N1+n]; p=Re(c); q=Im(c);
                if(p>-999 && p<999) g[m*N1+n]=p;
                if(q>-999 && q<999) f[m*N1+n]=q;
        }

p=2;
                  conto(o,f,w,v,X,Y,M,N, (-4 ),-999,999); fprintf(o,".04 W 1 0 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, ( -3  ),-999,999); fprintf(o,".04 W 1 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-3.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, (-2.     ),-9 ,9); fprintf(o,".03 W 1 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-2.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, (-1.     ),-9 ,9); fprintf(o,".03 W 1 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-1.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, (0.      ),-999,999); fprintf(o,".02 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (    .1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, ( 1.     ),-9 ,9); fprintf(o,".03 W 0 0 1 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 1.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, ( 2.     ),-9 ,9); fprintf(o,".03 W 0 0 1 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 2.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, ( 3   ),-99,99); fprintf(o,".04 W 0 0 1 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, ( 4  ),-99,99); fprintf(o,".04 W 0 0 1 RGB S\n");
//                  conto(o,f,w,v,X,Y,M,N, ( M_PI   ),-99,99); fprintf(o,".04 W 1 0 1 RGB S\n");
//                  conto(o,f,w,v,X,Y,M,N, (3*M_PI  ),-99,99); fprintf(o,".04 W 1 0 1 RGB S\n");

                  conto(o,g,w,v,X,Y,M,N, (-2.     ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-2.+.1*n),-p,p); fprintf(o,".01 W 1 0 0 RGB S\n");
                  conto(o,g,w,v,X,Y,M,N, (-1.     ),-3,3); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-1.+.1*n),-p,p); fprintf(o,".01 W 1 0 0 RGB S\n");
                  conto(o,g,w,v,X,Y,M,N, (0.      ),-99,99); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (    .1*n),-p,p); fprintf(o,".01 W 0 0 1 RGB S\n");
                  conto(o,g,w,v,X,Y,M,N, ( 1.     ),-3,3); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, ( 1.+.1*n),-p,p); fprintf(o,".01 W 0 0 1 RGB S\n");
                  conto(o,g,w,v,X,Y,M,N, ( 2.     ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
                  conto(o,g,w,v,X,Y,M,N, ( 3.     ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
                  conto(o,g,w,v,X,Y,M,N, ( 4.     ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");

M(-10,0)L(-2,0)fprintf(o,".04 W 1 0 1 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
//system( "ggv fig01d.eps");
system("epstopdf analuxp01i.eps");
system(    "open analuxp01i.eps");
getchar();
system("killall Preview");
}

Latex generator of labels

\documentclass[12pt]{article}
\usepackage{geometry}
\usepackage{graphics}
\usepackage{rotating}
\paperwidth  375px
\paperheight 542px
\textwidth 500pt
\textheight 900pt
\topmargin -100pt
\oddsidemargin -66pt
\parindent 0pt
\pagestyle{empty}
\newcommand \sx {\scalebox}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\begin{document}
\sx{1.}{\begin{picture}(370,80)
%\put(5,5){\includegraphics{fig01a}}
\put(6,6){\includegraphics{analuxp01e}}
\put(11,71){\sx{2}{e}}
\put( 0,82){\sx{1.2}{$y$}}
\put( 0,63){\sx{1.1}{$1$}}
\put( 0,43){\sx{1.1}{$0$}}
\put(-9,23){\sx{1.1}{$-1$}}
\put( 18,-2){\sx{1.1}{$-8$}}
\put( 58,-2){\sx{1.1}{$-6$}}
\put(98,-2){\sx{1.1}{$-4$}}
\put(138,-2){\sx{1.1}{$-2$}}
\put(186,-2){\sx{1.1}{$0$}}
\put(226,-2){\sx{1.1}{$2$}}
\put(266,-2){\sx{1.1}{$4$}}
\put(306,-2){\sx{1.1}{$6$}}
\put(346,-2){\sx{1.1}{$8$}}
\put(362,-2){\sx{1.2}{$x$}}

\put(-4,36){\sx{.8}{$u\!=\!0.4$}}
 
\put(156,56){\sx{.8}{\rot{56}{$v\!=\!1$}\ero}}
\put(152,24){\sx{.8}{\rot{32}{$u\!=\!0$}\ero}}

\put(21,63){\sx{.8}{$v\!=\!1.4$}}

\put(77,52){\sx{.8}{$v\!=\!1$}}
%\put(169,85.6){\sx{.8}{\rot{0.}{$v\!=\!2$}\ero}}
\put(169,65.6){\sx{.8}{\rot{0.}{$v\!=\!1$}\ero}}
\put(161,45.6){\sx{.8}{\rot{0.}{$v\!=\!0$}\ero}}
%\put(170,25){\sx{.8}{\rot{0.}{$v\!=\!-1$}\ero}}
\put(192,38){\sx{.8}{\rot{90}{$u\!=\!1$}\ero}}
\put(206,38){\sx{.8}{\rot{90}{$u\!=\!2$}\ero}}
\end{picture}}

\sx{1.}{\begin{picture}(370,96)
\put( 6,6){\includegraphics{analuxp01f}}
\put(11,71){\sx{2}{f}}
\put( 0,82){\sx{1.2}{$y$}}
\put( 0,63){\sx{1.1}{$1$}}
\put( 0,43){\sx{1.1}{$0$}}
\put(-9,23){\sx{1.1}{$-1$}}
\put( 18,-2){\sx{1.1}{$-8$}}
\put( 58,-2){\sx{1.1}{$-6$}}
\put( 98,-2){\sx{1.1}{$-4$}}
\put(138,-2){\sx{1.1}{$-2$}}
\put(186,-2){\sx{1.1}{$0$}}
\put(226,-2){\sx{1.1}{$2$}}
\put(266,-2){\sx{1.1}{$4$}}
\put(306,-2){\sx{1.1}{$6$}}
\put(346,-2){\sx{1.1}{$8$}}
\put(362,-2){\sx{1.2}{$x$}}

\put(-4,36){\sx{.8}{$u\!=\!0.4$}}
\multiput(20,66)(90,21){2}{\sx{.8}{$v\!=\!1.4$}}
\multiput(73,77)(-90,-21){1}{\sx{.8}{$u\!=\!0.4$}}
\multiput(163,86)(-90,-21){2}{\sx{.8}{$v\!=\!1.2$}}
\multiput(165,73)(-90,-21){2}{\sx{.8}{$v\!=\!1$}}
\put(164,46){\sx{.8}{$v\!=\!0$}}
\put(164,20){\sx{.8}{$v\!=\!-1$}}
\multiput(157,21)(90,-20.6){2}{\sx{.8}{\rot{46}{$u\!=\!0$}\ero}}
\put(191,39){\sx{.8}{\rot{90}{$u\!=\!1$}\ero}}
\multiput(74,13)(90,-21){1}{\sx{.8}{$u\!=\!0.4$}}
\multiput(18,26)(90,-21){1}{\sx{.8}{$v\!=\!-1.4$}}
\end{picture}}

\sx{1.}{\begin{picture}(366,176)
\put( 6,-14){\includegraphics{analuxp01g}}
\put(35,153){\sx{1.}{$u\!+\!\mathrm i v \!\approx\! L\!\approx\! 0.3\!+\!1.3\mathrm i$}}
\put(33,13){\sx{1.}{$u\!+\!\mathrm i v \!\approx\! L^*\!\approx\! 0.3\!-\!1.3\mathrm i$}}
\put(11,152){\sx{2}{g}}
\put( 0,164){\sx{1.2}{$y$}}
\put( 0,144){\sx{1.1}{$3$}}
\put( 0,124){\sx{1.1}{$2$}}
\put( 0,104){\sx{1.1}{$1$}}
\put( 0, 84){\sx{1.1}{$0$}}
\put(-9, 64){\sx{1.1}{$-1$}}
\put(-9, 44){\sx{1.1}{$-2$}}
\put(-9, 24){\sx{1.1}{$-3$}}
\put( 18,-2){\sx{1.1}{$-8$}}
\put( 58,-2){\sx{1.1}{$-6$}}
\put( 98,-2){\sx{1.1}{$-4$}}
\put(138,-2){\sx{1.1}{$-2$}}
\put(186,-2){\sx{1.1}{$0$}}
\put(226,-2){\sx{1.1}{$2$}}
\put(266,-2){\sx{1.1}{$4$}}
\put(306,-2){\sx{1.1}{$6$}}
\put(346,-2){\sx{1.1}{$8$}}
\put(362,-2){\sx{1.2}{$x$}}

\multiput(261,160)(-89,-20.8){4}{\sx{.8}{$u\!=\!0.4$}}
\multiput(251,147)(-90,-20.8){3}{\sx{.8}{$v\!=\!1.2$}}
\multiput(165,113)(90,20.8){3}{\sx{.8}{$v\!=\!1$}}
%\put(164,86){\sx{.8}{$v\!=\!0$}}
\multiput(164,60)(90,-20.8){3}{\sx{.8}{$v\!=\!-1$}}
\multiput(156,61)(90,-20.8){3}{\sx{.8}{\rot{44}{$u\!=\!0$}\ero}}
\put(191,79){\sx{.8}{\rot{90}{$u\!=\!1$}\ero}}
\multiput(16,106)(90,20.8){4}{\sx{.8}{$v\!=\!1.4$}}
\multiput(16,64)(90,-20.8){3}{\sx{.8}{$v\!=\!-1.4$}}
\multiput(75,54)(90,-20.8){3}{\sx{.8}{$u\!=\!0.4$}}

\end{picture}}

\sx{1.}{\begin{picture}(366,176)
\put( 6,-14){\includegraphics{analuxp01i}}
\put(35,153){\sx{1.}{$u\!+\!\mathrm i v \!\approx\! L\!\approx\! 0.3\!+\!1.3\mathrm i$}}
\put(33,13){\sx{1.}{$u\!+\!\mathrm i v \!\approx\! L^*\!\approx\! 0.3\!-\!1.3\mathrm i$}}
\put(11,151){\sx{2}{h}}
\put( 0,162){\sx{1.2}{$y$}}
\put( 0,144){\sx{1.1}{$3$}}
\put( 0,124){\sx{1.1}{$2$}}
\put( 0,104){\sx{1.1}{$1$}}
\put( 0, 84){\sx{1.1}{$0$}}
\put(-9, 64){\sx{1.1}{$-1$}}
\put(-9, 44){\sx{1.1}{$-2$}}
\put(-9, 24){\sx{1.1}{$-3$}}
\put( 18,-2){\sx{1.1}{$-8$}}
\put( 58,-2){\sx{1.1}{$-6$}}
\put( 98,-2){\sx{1.1}{$-4$}}
\put(138,-2){\sx{1.1}{$-2$}}
\put(186,-2){\sx{1.1}{$0$}}
\put(226,-2){\sx{1.1}{$2$}}
\put(266,-2){\sx{1.1}{$4$}}
\put(306,-2){\sx{1.1}{$6$}}
\put(346,-2){\sx{1.1}{$8$}}
\put(362,-2){\sx{1.2}{$x$}}

\multiput(261,160)(-89,-20.8){4}{\sx{.8}{$u\!=\!0.4$}}
%\multiput(251,159)(-90,-20.8){4}{\sx{.8}{$u\!=\!0.4$}}
\multiput(251,147)(-90,-20.8){3}{\sx{.8}{$v\!=\!1.2$}}
\multiput(165,113)(90,20.8){3}{\sx{.8}{$v\!=\!1$}}
\put(164,86){\sx{.8}{$v\!=\!0$}}
\multiput(164,60)(90,-20.8){3}{\sx{.8}{$v\!=\!-1$}}
\multiput(156,61)(90,-20.8){3}{\sx{.8}{\rot{44}{$u\!=\!0$}\ero}}
\put(191,79){\sx{.8}{\rot{90}{$u\!=\!1$}\ero}}
\multiput(16,106)(90,20.8){4}{\sx{.8}{$v\!=\!1.4$}}
\multiput(16,64)(90,-20.8){3}{\sx{.8}{$v\!=\!-1.4$}}
\multiput(75,54)(90,-20.8){3}{\sx{.8}{$u\!=\!0.4$}}

\end{picture}}
\end{document}

References

  1. https://www.amazon.co.jp/-/en/Dmitrii-Kouznetsov/dp/6202672862
    https://www.morebooks.de/shop-ui/shop/product/978-620-2-67286-3
    https://mizugadro.mydns.jp/BOOK/458.pdf Dmitrii Kouznetsov. Superfunctions. Lambert Academic Piblishing, 2020. Page 181, Fig.14.4.
  2. https://mizugadro.mydns.jp/BOOK/2020.pdf Дмитрий Кузнецов. Суперфункции. Lambert Academic Piblishing, 2014. Page 180, Fig.14.4.
  3. 3. M.H.Hooshmand. ”Ultra power and ultra exponential functions”. Integral Transforms and Special Functions 17 (8), 549-558 (2006)
  4. 4.0 4.1 4.2 http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html
    Preprint: http://www.ils.uec.ac.jp/~dima/PAPERS/2009analuxpRepri.pdf D.Kouznetsov. Analytic solution of F(z+1)=exp(F(z)) in complex z-plane. Mathematics of Computation, v.78 (2009), 1647-1670.
  5. 5.0 5.1 http://mizugadro.mydns.jp/PAPERS/2010vladie.pdf English version
    http://mizugadro.mydns.jp/PAPERS/2009vladie.pdf Preprint, English version
    http://mizugadro.mydns.jp/PAPERS/2009vladir.pdf Preprint, Russian version
    D.Kouznetsov. Superexponential as special function. Vladikavkaz Mathematical Journal, 2010, v.12, issue 2, p.31-45.
  6. Michael Moldenhauer. Question about tetration method. Private communication, Sat, 9 Nov 2013 01:11:53 -0800 (PST). .. how did you come up with the high-quality initial approximation "fit_3" mentioned in your paper about the tetrational function?

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current06:10, 1 December 2018Thumbnail for version as of 06:10, 1 December 20182,083 × 3,011 (1.67 MB)Maintenance script (talk | contribs)Importing image file

There are no pages that use this file.

Metadata