Difference between revisions of "File:Exp1mapT200.jpg"
(4 intermediate revisions by the same user not shown) | |||
Line 4: | Line 4: | ||
in the $z=x+\mathrm i y$ plane. |
in the $z=x+\mathrm i y$ plane. |
||
− | The additional thick green lines show $u=\Re(L)$ and $ |
+ | The additional thick green lines show $u=\Re(L)$ and $v=\Im(L)$ where $L\approx 0.3+1.3 \mathrm i $ is [[fixed point]] of logarithm, $L=\ln(L)$. |
The generator below, that plots this image, uses representation of the exponential through [[tetration]] and [[arctetration]]. |
The generator below, that plots this image, uses representation of the exponential through [[tetration]] and [[arctetration]]. |
||
Line 12: | Line 12: | ||
==[[C++]] generator of curves== |
==[[C++]] generator of curves== |
||
− | // Files [[ado.cin]], [[conto.cin]], [[ |
+ | // Files [[ado.cin]], [[conto.cin]], [[fsexp.cin]] and [[fslog.cin]] should be loaded in the working directory in order to compile the code below. |
#include <math.h> |
#include <math.h> |
||
Line 76: | Line 76: | ||
getchar(); system("killall Preview"); // For macintosh |
getchar(); system("killall Preview"); // For macintosh |
||
} |
} |
||
+ | |||
+ | ==[[Latex]] generator of labels== |
||
+ | %<poem><nomathjax><nowiki> |
||
+ | \documentclass[12pt]{article} |
||
+ | \usepackage{geometry} |
||
+ | \paperwidth 824pt |
||
+ | \paperheight 426pt |
||
+ | \usepackage{graphics} |
||
+ | \usepackage{rotating} |
||
+ | \newcommand \rot {\begin{rotate}} |
||
+ | \newcommand \ero {\end{rotate}} |
||
+ | |||
+ | \textwidth 810pt |
||
+ | \topmargin -105pt |
||
+ | \oddsidemargin -74pt |
||
+ | \pagestyle{empty} |
||
+ | \parindent 0pt |
||
+ | \newcommand \sx {\scalebox} |
||
+ | \begin{document} |
||
+ | \begin{picture}(820,420) |
||
+ | \put(20,20){\includegraphics{exp1map}} |
||
+ | \put(4,412){\sx{2.2}{$y$}} |
||
+ | \put(4,313){\sx{2.2}{$3$}} |
||
+ | \put(4,213){\sx{2.2}{$2$}} |
||
+ | \put(4,113){\sx{2.2}{$1$}} |
||
+ | \put(4,16){\sx{2.2}{$0$}} |
||
+ | \put(2,0){\sx{2.2}{$-4$}} |
||
+ | \put(100,0){\sx{2.2}{$-3$}} |
||
+ | \put(200,0){\sx{2.2}{$-2$}} |
||
+ | \put(300,0){\sx{2.2}{$-1$}} |
||
+ | \put(420,0){\sx{2.2}{$0$}} |
||
+ | \put(520,0){\sx{2.2}{$1$}} |
||
+ | \put(620,0){\sx{2.2}{$2$}} |
||
+ | \put(720,0){\sx{2.2}{$3$}} |
||
+ | \put(811,0){\sx{2.2}{$x$}} |
||
+ | \put(140,329){\sx{2.4}{$v\!=\!0$}} |
||
+ | \put(260,290){\sx{2}{\rot{-45} $u\!=\!-0.2$ \ero}} |
||
+ | \put(324,318){\sx{2}{\rot{-60} $u\!=\!-0.4$ \ero}} |
||
+ | \put(362,330){\sx{2}{\rot{-64} $u\!=\!-0.6$ \ero}} |
||
+ | \put(262,190){\sx{2}{\rot{ 64} $v\!=\!0.2$ \ero}} |
||
+ | \put(332,182){\sx{2}{\rot{ 66} $v\!=\!0.4$ \ero}} |
||
+ | \put(373,180){\sx{2}{\rot{ 70} $v\!=\!0.6$ \ero}} |
||
+ | \put(400,180){\sx{2}{\rot{ 70} $v\!=\!0.8$ \ero}} |
||
+ | \put(424,180){\sx{2.2}{\rot{ 70} $v\!=\!1$ \ero}} |
||
+ | \put(454,178){\sx{1.9}{\rot{ 70} $v\!=\!\Im(L)$ \ero}} |
||
+ | \put(495,178){\sx{2}{\rot{ 75} $v\!=\!2$ \ero}} |
||
+ | \put(535,178){\sx{2}{\rot{ 75} $v\!=\!3$ \ero}} |
||
+ | %\put(40,180){\sx{2}{$u=0$}} |
||
+ | \put(140,171){\sx{2.4}{$u\!=\!0$}} |
||
+ | % |
||
+ | \put(262,22){\sx{2}{\rot{ 70} $u\!=\!0.2$ \ero}} |
||
+ | \put(306,22){\sx{2}{\rot{ 69} $u\!=\!\Re(L)$ \ero}} |
||
+ | \put(332,22){\sx{2}{\rot{ 70} $u\!=\!0.4$ \ero}} |
||
+ | \put(372,22){\sx{2}{\rot{ 70} $u\!=\!0.6$ \ero}} |
||
+ | \put(402,22){\sx{2}{\rot{ 70} $u\!=\!0.8$ \ero}} |
||
+ | \put(425,22){\sx{2.2}{\rot{ 70} $u\!=\!1$ \ero}} |
||
+ | \put(496,22){\sx{2.2}{\rot{ 73} $u\!=\!2$ \ero}} |
||
+ | \put(536,22){\sx{2.2}{\rot{ 73} $u\!=\!3$ \ero}} |
||
+ | \end{picture} |
||
+ | \end{document} |
||
+ | %</nowiki></nomathjax></poem> |
||
+ | |||
+ | |||
==References== |
==References== |
||
<references/> |
<references/> |
||
http://www.ams.org/journals/bull/1993-29-02/S0273-0979-1993-00432-4/S0273-0979-1993-00432-4.pdf Walter Bergweiler. Iteration of meromorphic functions. Bull. Amer. Math. Soc. 29 (1993), 151-188. |
http://www.ams.org/journals/bull/1993-29-02/S0273-0979-1993-00432-4/S0273-0979-1993-00432-4.pdf Walter Bergweiler. Iteration of meromorphic functions. Bull. Amer. Math. Soc. 29 (1993), 151-188. |
||
− | http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html |
+ | http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html <br> |
− | http://www.ils.uec.ac.jp/~dima/PAPERS/2009analuxpRepri.pdf |
+ | http://www.ils.uec.ac.jp/~dima/PAPERS/2009analuxpRepri.pdf <br> |
http://mizugadro.mydns.jp/PAPERS/2009analuxpRepri.pdf D. Kouznetsov. Solution of F(x+1)=exp(F(x)) in complex z-plane. 78, (2009), 1647-1670 |
http://mizugadro.mydns.jp/PAPERS/2009analuxpRepri.pdf D. Kouznetsov. Solution of F(x+1)=exp(F(x)) in complex z-plane. 78, (2009), 1647-1670 |
||
− | http://www.ils.uec.ac.jp.jp/~dima/PAPERS/2009vladie.pdf (English) |
+ | http://www.ils.uec.ac.jp.jp/~dima/PAPERS/2009vladie.pdf (English) <br> |
− | http://mizugadro.mydns.jp/PAPERS/2010vladie.pdf (English) |
+ | http://mizugadro.mydns.jp/PAPERS/2010vladie.pdf (English) <br> |
− | http://mizugadro.mydns.jp/PAPERS/2009vladir.pdf (Russian version) |
+ | http://mizugadro.mydns.jp/PAPERS/2009vladir.pdf (Russian version) <br> |
D.Kouznetsov. Superexponential as special function. Vladikavkaz Mathematical Journal, 2010, v.12, issue 2, p.31-45. |
D.Kouznetsov. Superexponential as special function. Vladikavkaz Mathematical Journal, 2010, v.12, issue 2, p.31-45. |
||
Line 96: | Line 159: | ||
[[Category:Exponent]] |
[[Category:Exponent]] |
||
[[Category:Iteration]] |
[[Category:Iteration]] |
||
+ | [[Category:Iteration of exp]] |
||
[[Category:Latex]] |
[[Category:Latex]] |
||
[[Category:Superfunction]] |
[[Category:Superfunction]] |
Latest revision as of 12:37, 28 July 2013
Complex map of the first iteration of exponent in the upper half-plane,
$u+\mathrm i v = \mathrm{tet}(1.+\mathrm{ate}(z))=\exp(z)$ in the $z=x+\mathrm i y$ plane.
The additional thick green lines show $u=\Re(L)$ and $v=\Im(L)$ where $L\approx 0.3+1.3 \mathrm i $ is fixed point of logarithm, $L=\ln(L)$.
The generator below, that plots this image, uses representation of the exponential through tetration and arctetration. WIth minimal modification, this code can generate the similar picture for any other iterate of the exponential, even non-integer and eve nomplex iterate.
C++ generator of curves
// Files ado.cin, conto.cin, fsexp.cin and fslog.cin should be loaded in the working directory in order to compile the code below.
#include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) using namespace std; #include<complex> typedef complex<double> z_type; #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.) #include "conto.cin" #include "fsexp.cin" #include "fslog.cin" main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd; int M=401,M1=M+1; int N=403,N1=N+1; DB X[M1],Y[N1]; DB *g, *f, *w; // w is working array. g=(DB *)malloc((size_t)((M1*N1)*sizeof(DB))); f=(DB *)malloc((size_t)((M1*N1)*sizeof(DB))); w=(DB *)malloc((size_t)((M1*N1)*sizeof(DB))); char v[M1*N1]; // v is working array FILE *o;o=fopen("exp1map.eps","w"); ado(o,802,402); fprintf(o,"401 1 translate\n 100 100 scale\n"); fprintf(o,"1 setlinejoin 2 setlinecap\n"); DO(m,M1) X[m]=-4+.02*(m-.5); DO(n,N1) { y=0.+.01*(n-.5); if(y>Im(Zo)) break; Y[n]=y; } Y[n] =Im(Zo)-.00001; Y[n+1]=Im(Zo)+.00001; for(m=n+2;m<N1;m++) Y[m]=.01*(m-2-.5); for(m=-4;m<5;m++){M(m,0) L(m,4) } for(n=0;n<5;n++){M( -4,n) L(4,n)} fprintf(o,".006 W 0 0 0 RGB S\n"); DO(m,M1)DO(n,N1){ g[m*N1+n]=999; f[m*N1+n]=999;} DO(m,M1){x=X[m]; if(m/10*10==m) printf("x=%6.3f\n",x); DO(n,N1){y=Y[n]; z=z_type(x,y); //if(abs(z+2.)>.019) c=FSEXP(1.+FSLOG(z)); p=Re(c); q=Im(c);// if(p>-19 && p<19 && ( x<2. || fabs(q)>1.e-12 && fabs(p)>1.e-12) ) { g[m*N1+n]=p;f[m*N1+n]=q;} }} fprintf(o,"1 setlinejoin 1 setlinecap\n"); p=2.;q=1; conto(o,g,w,v,X,Y,M,N, Re(Zo),-p,p);fprintf(o,".03 W 0 1 0 RGB S\n"); conto(o,f,w,v,X,Y,M,N, Im(Zo),-p,p);fprintf(o,".03 W 0 1 0 RGB S\n"); for(m=-8;m<8;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q,q);fprintf(o,".007 W 0 .6 0 RGB S\n"); for(m=0;m<8;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q,q);fprintf(o,".007 W .9 0 0 RGB S\n"); for(m=0;m<8;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q,q);fprintf(o,".007 W 0 0 .9 RGB S\n"); for(m= 1;m<17;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-q,q);fprintf(o,".02 W .8 0 0 RGB S\n"); for(m= 1;m<17;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-q,q);fprintf(o,".02 W 0 0 .8 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".02 W .5 0 .5 RGB S\n"); for(m=-16;m<17;m++)conto(o,g,w,v,X,Y,M,N,(0.+m),-q,q);fprintf(o,".02 W 0 0 0 RGB S\n"); fprintf(o,"0 setlinejoin 0 setlinecap\n"); M(Re(Zo),Im(Zo))L(-4,Im(Zo)) fprintf(o,"1 1 1 RGB .022 W S\n"); DO(n,40){M(Re(Zo)-.2*n,Im(Zo))L(Re(Zo)-.2*(n+.4),Im(Zo)) } fprintf(o,"0 0 0 RGB .032 W S\n"); fprintf(o,"showpage\n"); fprintf(o,"%c%cTrailer\n",'%','%'); fclose(o); free(f); free(g); free(w); system("epstopdf exp1map.eps"); system( "open exp1map.pdf"); //for macintosh getchar(); system("killall Preview"); // For macintosh }
Latex generator of labels
%
\documentclass[12pt]{article}
\usepackage{geometry}
\paperwidth 824pt
\paperheight 426pt
\usepackage{graphics}
\usepackage{rotating}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\textwidth 810pt
\topmargin -105pt
\oddsidemargin -74pt
\pagestyle{empty}
\parindent 0pt
\newcommand \sx {\scalebox}
\begin{document}
\begin{picture}(820,420)
\put(20,20){\includegraphics{exp1map}}
\put(4,412){\sx{2.2}{$y$}}
\put(4,313){\sx{2.2}{$3$}}
\put(4,213){\sx{2.2}{$2$}}
\put(4,113){\sx{2.2}{$1$}}
\put(4,16){\sx{2.2}{$0$}}
\put(2,0){\sx{2.2}{$-4$}}
\put(100,0){\sx{2.2}{$-3$}}
\put(200,0){\sx{2.2}{$-2$}}
\put(300,0){\sx{2.2}{$-1$}}
\put(420,0){\sx{2.2}{$0$}}
\put(520,0){\sx{2.2}{$1$}}
\put(620,0){\sx{2.2}{$2$}}
\put(720,0){\sx{2.2}{$3$}}
\put(811,0){\sx{2.2}{$x$}}
\put(140,329){\sx{2.4}{$v\!=\!0$}}
\put(260,290){\sx{2}{\rot{-45} $u\!=\!-0.2$ \ero}}
\put(324,318){\sx{2}{\rot{-60} $u\!=\!-0.4$ \ero}}
\put(362,330){\sx{2}{\rot{-64} $u\!=\!-0.6$ \ero}}
\put(262,190){\sx{2}{\rot{ 64} $v\!=\!0.2$ \ero}}
\put(332,182){\sx{2}{\rot{ 66} $v\!=\!0.4$ \ero}}
\put(373,180){\sx{2}{\rot{ 70} $v\!=\!0.6$ \ero}}
\put(400,180){\sx{2}{\rot{ 70} $v\!=\!0.8$ \ero}}
\put(424,180){\sx{2.2}{\rot{ 70} $v\!=\!1$ \ero}}
\put(454,178){\sx{1.9}{\rot{ 70} $v\!=\!\Im(L)$ \ero}}
\put(495,178){\sx{2}{\rot{ 75} $v\!=\!2$ \ero}}
\put(535,178){\sx{2}{\rot{ 75} $v\!=\!3$ \ero}}
%\put(40,180){\sx{2}{$u=0$}}
\put(140,171){\sx{2.4}{$u\!=\!0$}}
%
\put(262,22){\sx{2}{\rot{ 70} $u\!=\!0.2$ \ero}}
\put(306,22){\sx{2}{\rot{ 69} $u\!=\!\Re(L)$ \ero}}
\put(332,22){\sx{2}{\rot{ 70} $u\!=\!0.4$ \ero}}
\put(372,22){\sx{2}{\rot{ 70} $u\!=\!0.6$ \ero}}
\put(402,22){\sx{2}{\rot{ 70} $u\!=\!0.8$ \ero}}
\put(425,22){\sx{2.2}{\rot{ 70} $u\!=\!1$ \ero}}
\put(496,22){\sx{2.2}{\rot{ 73} $u\!=\!2$ \ero}}
\put(536,22){\sx{2.2}{\rot{ 73} $u\!=\!3$ \ero}}
\end{picture}
\end{document}
%
References
http://www.ams.org/journals/bull/1993-29-02/S0273-0979-1993-00432-4/S0273-0979-1993-00432-4.pdf Walter Bergweiler. Iteration of meromorphic functions. Bull. Amer. Math. Soc. 29 (1993), 151-188.
http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html
http://www.ils.uec.ac.jp/~dima/PAPERS/2009analuxpRepri.pdf
http://mizugadro.mydns.jp/PAPERS/2009analuxpRepri.pdf D. Kouznetsov. Solution of F(x+1)=exp(F(x)) in complex z-plane. 78, (2009), 1647-1670
http://www.ils.uec.ac.jp.jp/~dima/PAPERS/2009vladie.pdf (English)
http://mizugadro.mydns.jp/PAPERS/2010vladie.pdf (English)
http://mizugadro.mydns.jp/PAPERS/2009vladir.pdf (Russian version)
D.Kouznetsov. Superexponential as special function. Vladikavkaz Mathematical Journal, 2010, v.12, issue 2, p.31-45.
http://reference.wolfram.com/mathematica/ref/Nest.html Nest, Wolfram Mathematica 9 Documentation center, 2013
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 11:40, 28 July 2013 | 2,281 × 1,179 (1.14 MB) | T (talk | contribs) | shift for 2 px to left | |
20:42, 26 July 2013 | 1,711 × 885 (722 KB) | T (talk | contribs) | Complex map of the first iteration of exponent in the upper half-plane, $u+\mathrm i v = \mathrm{tet}(1.+\mathrm{ate}(z))=\exp(z)$ in the $z=x+\mathrm i y$ plane. Category:Arctetration Category:Complex map Category:Exponent [[Cate... |
You cannot overwrite this file.
File usage
The following page uses this file: