Difference between revisions of "File:Exp1mapT200.jpg"

From TORI
Jump to navigation Jump to search
 
(One intermediate revision by the same user not shown)
Line 143: Line 143:
 
http://www.ams.org/journals/bull/1993-29-02/S0273-0979-1993-00432-4/S0273-0979-1993-00432-4.pdf Walter Bergweiler. Iteration of meromorphic functions. Bull. Amer. Math. Soc. 29 (1993), 151-188.
 
http://www.ams.org/journals/bull/1993-29-02/S0273-0979-1993-00432-4/S0273-0979-1993-00432-4.pdf Walter Bergweiler. Iteration of meromorphic functions. Bull. Amer. Math. Soc. 29 (1993), 151-188.
   
http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html
+
http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html <br>
http://www.ils.uec.ac.jp/~dima/PAPERS/2009analuxpRepri.pdf
+
http://www.ils.uec.ac.jp/~dima/PAPERS/2009analuxpRepri.pdf <br>
 
http://mizugadro.mydns.jp/PAPERS/2009analuxpRepri.pdf D. Kouznetsov. Solution of F(x+1)=exp(F(x)) in complex z-plane. 78, (2009), 1647-1670
 
http://mizugadro.mydns.jp/PAPERS/2009analuxpRepri.pdf D. Kouznetsov. Solution of F(x+1)=exp(F(x)) in complex z-plane. 78, (2009), 1647-1670
   
http://www.ils.uec.ac.jp.jp/~dima/PAPERS/2009vladie.pdf (English)
+
http://www.ils.uec.ac.jp.jp/~dima/PAPERS/2009vladie.pdf (English) <br>
http://mizugadro.mydns.jp/PAPERS/2010vladie.pdf (English)
+
http://mizugadro.mydns.jp/PAPERS/2010vladie.pdf (English) <br>
http://mizugadro.mydns.jp/PAPERS/2009vladir.pdf (Russian version)
+
http://mizugadro.mydns.jp/PAPERS/2009vladir.pdf (Russian version) <br>
 
D.Kouznetsov. Superexponential as special function. Vladikavkaz Mathematical Journal, 2010, v.12, issue 2, p.31-45.
 
D.Kouznetsov. Superexponential as special function. Vladikavkaz Mathematical Journal, 2010, v.12, issue 2, p.31-45.
   
Line 159: Line 159:
 
[[Category:Exponent]]
 
[[Category:Exponent]]
 
[[Category:Iteration]]
 
[[Category:Iteration]]
  +
[[Category:Iteration of exp]]
 
[[Category:Latex]]
 
[[Category:Latex]]
 
[[Category:Superfunction]]
 
[[Category:Superfunction]]

Latest revision as of 12:37, 28 July 2013

Complex map of the first iteration of exponent in the upper half-plane,

$u+\mathrm i v = \mathrm{tet}(1.+\mathrm{ate}(z))=\exp(z)$ in the $z=x+\mathrm i y$ plane.

The additional thick green lines show $u=\Re(L)$ and $v=\Im(L)$ where $L\approx 0.3+1.3 \mathrm i $ is fixed point of logarithm, $L=\ln(L)$.

The generator below, that plots this image, uses representation of the exponential through tetration and arctetration. WIth minimal modification, this code can generate the similar picture for any other iterate of the exponential, even non-integer and eve nomplex iterate.

C++ generator of curves

// Files ado.cin, conto.cin, fsexp.cin and fslog.cin should be loaded in the working directory in order to compile the code below.

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
using namespace std;
#include<complex>
typedef complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
#include "fsexp.cin"
#include "fslog.cin"
main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
int M=401,M1=M+1;
int N=403,N1=N+1;
DB X[M1],Y[N1];
DB *g, *f, *w; // w is working array.
g=(DB *)malloc((size_t)((M1*N1)*sizeof(DB)));
f=(DB *)malloc((size_t)((M1*N1)*sizeof(DB)));
w=(DB *)malloc((size_t)((M1*N1)*sizeof(DB)));
char v[M1*N1]; // v is working array
FILE *o;o=fopen("exp1map.eps","w"); ado(o,802,402);
fprintf(o,"401 1 translate\n 100 100 scale\n");
fprintf(o,"1 setlinejoin 2 setlinecap\n");
DO(m,M1) X[m]=-4+.02*(m-.5);
DO(n,N1) { y=0.+.01*(n-.5); if(y>Im(Zo)) break; Y[n]=y; }
Y[n]  =Im(Zo)-.00001;
Y[n+1]=Im(Zo)+.00001;
for(m=n+2;m<N1;m++) Y[m]=.01*(m-2-.5);
for(m=-4;m<5;m++){M(m,0) L(m,4)  }
for(n=0;n<5;n++){M(  -4,n) L(4,n)}
 fprintf(o,".006 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){      g[m*N1+n]=999; f[m*N1+n]=999;}
DO(m,M1){x=X[m]; if(m/10*10==m) printf("x=%6.3f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y); //if(abs(z+2.)>.019)
c=FSEXP(1.+FSLOG(z));
 p=Re(c); q=Im(c);// if(p>-19 && p<19 && ( x<2. ||  fabs(q)>1.e-12 && fabs(p)>1.e-12) )
                  { g[m*N1+n]=p;f[m*N1+n]=q;}
       }}
fprintf(o,"1 setlinejoin 1 setlinecap\n");   p=2.;q=1;
conto(o,g,w,v,X,Y,M,N, Re(Zo),-p,p);fprintf(o,".03 W 0 1 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, Im(Zo),-p,p);fprintf(o,".03 W 0 1 0 RGB S\n");
for(m=-8;m<8;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q,q);fprintf(o,".007 W 0 .6 0 RGB S\n");
for(m=0;m<8;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q,q);fprintf(o,".007 W .9 0 0 RGB S\n");
for(m=0;m<8;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q,q);fprintf(o,".007 W 0 0 .9 RGB S\n");
for(m= 1;m<17;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-q,q);fprintf(o,".02 W .8 0 0 RGB S\n");
for(m= 1;m<17;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-q,q);fprintf(o,".02 W 0 0 .8 RGB S\n");
               conto(o,f,w,v,X,Y,M,N, (0.  ),-p,p); fprintf(o,".02 W .5 0 .5 RGB S\n");
for(m=-16;m<17;m++)conto(o,g,w,v,X,Y,M,N,(0.+m),-q,q);fprintf(o,".02 W 0 0 0 RGB S\n");
fprintf(o,"0 setlinejoin 0 setlinecap\n");
M(Re(Zo),Im(Zo))L(-4,Im(Zo)) fprintf(o,"1 1 1 RGB .022 W S\n");
DO(n,40){M(Re(Zo)-.2*n,Im(Zo))L(Re(Zo)-.2*(n+.4),Im(Zo)) }
 fprintf(o,"0 0 0 RGB .032 W S\n");
fprintf(o,"showpage\n");
fprintf(o,"%c%cTrailer\n",'%','%');
fclose(o);  free(f); free(g); free(w);
      system("epstopdf exp1map.eps"); 
      system(    "open exp1map.pdf"); //for macintosh
      getchar(); system("killall Preview"); // For macintosh
}

Latex generator of labels

%


\documentclass[12pt]{article}
\usepackage{geometry}
\paperwidth 824pt
\paperheight 426pt
\usepackage{graphics}
\usepackage{rotating}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}

\textwidth 810pt
\topmargin -105pt
\oddsidemargin -74pt
\pagestyle{empty}
\parindent 0pt
\newcommand \sx {\scalebox}
\begin{document}
\begin{picture}(820,420)
\put(20,20){\includegraphics{exp1map}}
\put(4,412){\sx{2.2}{$y$}}
\put(4,313){\sx{2.2}{$3$}}
\put(4,213){\sx{2.2}{$2$}}
\put(4,113){\sx{2.2}{$1$}}
\put(4,16){\sx{2.2}{$0$}}
\put(2,0){\sx{2.2}{$-4$}}
\put(100,0){\sx{2.2}{$-3$}}
\put(200,0){\sx{2.2}{$-2$}}
\put(300,0){\sx{2.2}{$-1$}}
\put(420,0){\sx{2.2}{$0$}}
\put(520,0){\sx{2.2}{$1$}}
\put(620,0){\sx{2.2}{$2$}}
\put(720,0){\sx{2.2}{$3$}}
\put(811,0){\sx{2.2}{$x$}}
\put(140,329){\sx{2.4}{$v\!=\!0$}}
\put(260,290){\sx{2}{\rot{-45} $u\!=\!-0.2$ \ero}}
\put(324,318){\sx{2}{\rot{-60} $u\!=\!-0.4$ \ero}}
\put(362,330){\sx{2}{\rot{-64} $u\!=\!-0.6$ \ero}}
\put(262,190){\sx{2}{\rot{ 64} $v\!=\!0.2$ \ero}}
\put(332,182){\sx{2}{\rot{ 66} $v\!=\!0.4$ \ero}}
\put(373,180){\sx{2}{\rot{ 70} $v\!=\!0.6$ \ero}}
\put(400,180){\sx{2}{\rot{ 70} $v\!=\!0.8$ \ero}}
\put(424,180){\sx{2.2}{\rot{ 70} $v\!=\!1$ \ero}}
\put(454,178){\sx{1.9}{\rot{ 70} $v\!=\!\Im(L)$ \ero}}
\put(495,178){\sx{2}{\rot{ 75} $v\!=\!2$ \ero}}
\put(535,178){\sx{2}{\rot{ 75} $v\!=\!3$ \ero}}
%\put(40,180){\sx{2}{$u=0$}}
\put(140,171){\sx{2.4}{$u\!=\!0$}}
%
\put(262,22){\sx{2}{\rot{ 70} $u\!=\!0.2$ \ero}}
\put(306,22){\sx{2}{\rot{ 69} $u\!=\!\Re(L)$ \ero}}
\put(332,22){\sx{2}{\rot{ 70} $u\!=\!0.4$ \ero}}
\put(372,22){\sx{2}{\rot{ 70} $u\!=\!0.6$ \ero}}
\put(402,22){\sx{2}{\rot{ 70} $u\!=\!0.8$ \ero}}
\put(425,22){\sx{2.2}{\rot{ 70} $u\!=\!1$ \ero}}
\put(496,22){\sx{2.2}{\rot{ 73} $u\!=\!2$ \ero}}
\put(536,22){\sx{2.2}{\rot{ 73} $u\!=\!3$ \ero}}
\end{picture}
\end{document}
%


References

http://www.ams.org/journals/bull/1993-29-02/S0273-0979-1993-00432-4/S0273-0979-1993-00432-4.pdf Walter Bergweiler. Iteration of meromorphic functions. Bull. Amer. Math. Soc. 29 (1993), 151-188.

http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html
http://www.ils.uec.ac.jp/~dima/PAPERS/2009analuxpRepri.pdf
http://mizugadro.mydns.jp/PAPERS/2009analuxpRepri.pdf D. Kouznetsov. Solution of F(x+1)=exp(F(x)) in complex z-plane. 78, (2009), 1647-1670

http://www.ils.uec.ac.jp.jp/~dima/PAPERS/2009vladie.pdf (English)
http://mizugadro.mydns.jp/PAPERS/2010vladie.pdf (English)
http://mizugadro.mydns.jp/PAPERS/2009vladir.pdf (Russian version)
D.Kouznetsov. Superexponential as special function. Vladikavkaz Mathematical Journal, 2010, v.12, issue 2, p.31-45.

http://reference.wolfram.com/mathematica/ref/Nest.html Nest, Wolfram Mathematica 9 Documentation center, 2013

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current11:40, 28 July 2013Thumbnail for version as of 11:40, 28 July 20132,281 × 1,179 (1.14 MB)T (talk | contribs)shift for 2 px to left
20:42, 26 July 2013Thumbnail for version as of 20:42, 26 July 20131,711 × 885 (722 KB)T (talk | contribs)Complex map of the first iteration of exponent in the upper half-plane, $u+\mathrm i v = \mathrm{tet}(1.+\mathrm{ate}(z))=\exp(z)$ in the $z=x+\mathrm i y$ plane. Category:Arctetration Category:Complex map Category:Exponent [[Cate...

The following page uses this file:

Metadata