Difference between revisions of "Fourier transform"

From TORI
Jump to navigation Jump to search
 
m (Text replacement - "\$([^\$]+)\$" to "\\(\1\\)")
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 
'''Fourier transform''' is linear integral transform with the exponential [[kernel]].
 
'''Fourier transform''' is linear integral transform with the exponential [[kernel]].
   
Let some complex–valued function $A$ be defined for real values of the argument, id est,
+
Let some complex–valued function \(A\) be defined for real values of the argument, id est,
: $A : \mathbb R \mapsto \mathbb C$
+
: \(A : \mathbb R \mapsto \mathbb C\)
Then, function $B : \mathbb R \mapsto \mathbb C$ can be defined with
+
Then, function \(B : \mathbb R \mapsto \mathbb C\) can be defined with
: $\!\!\!\!\!\!\!\!\!\!\!\!\!(1) ~ ~ ~ \displaystyle B(x)= \frac{1}{\sqrt{2\pi}} \int_{- \infty}^{\infty} \exp( - \mathrm{i} x y) A(y) ~ \mathrm{d} y $
+
: \(\!\!\!\!\!\!\!\!\!\!\!\!\!(1) ~ ~ ~ \displaystyle B(x)= \frac{1}{\sqrt{2\pi}} \int_{- \infty}^{\infty} \exp( - \mathrm{i} x y) A(y) ~ \mathrm{d} y \)
If the integral converges, then, function $B$ is called '''Fourier transform''' of function $A$.
+
If the integral converges, then, function \(B\) is called '''Fourier transform''' of function \(A\).
   
 
The Fourier transform is used in various sciences and, especially, in [[physics]].
 
The Fourier transform is used in various sciences and, especially, in [[physics]].
In [[Quantum mechanics]], function $A$ may have sense of the [[wave function]] in the [[coordinate representation]], then $B$ corresponds to the [[momentum representation]].
+
In [[Quantum mechanics]], function \(A\) may have sense of the [[wave function]] in the [[coordinate representation]], then \(B\) corresponds to the [[momentum representation]].
 
Many equations can be solved using the Fourier Transform. Especially efficient is the Fourier transform in the consideration of the [[paraxial approximation]] of the wave equations.
 
Many equations can be solved using the Fourier Transform. Especially efficient is the Fourier transform in the consideration of the [[paraxial approximation]] of the wave equations.
   
Line 14: Line 14:
   
 
==Fourier operator==
 
==Fourier operator==
On the equation (1), the Fourier operator $$ can be defined in the following way:
+
On the equation (1), the Fourier operator \(\) can be defined in the following way:
: $\!\!\!\!\!\!\!\!\!\!\!\!\!(2) ~ ~ ~ \displaystyle (\hat ふ A)(x)= \frac{1}{\sqrt{2\pi}} \int_{- \infty}^{\infty} \exp( - \mathrm{i} x y) A(y) ~ \mathrm{d} y $
+
: \(\!\!\!\!\!\!\!\!\!\!\!\!\!(2) ~ ~ ~ \displaystyle (\hat ふ A)(x)= \frac{1}{\sqrt{2\pi}} \int_{- \infty}^{\infty} \exp( - \mathrm{i} x y) A(y) ~ \mathrm{d} y \)
 
Then the equation (1) can be qritten as
 
Then the equation (1) can be qritten as
: $\!\!\!\!\!\!\!\!\!\!\!\!\!(3) ~ ~ ~ \displaystyle B= \hat ふ A$
+
: \(\!\!\!\!\!\!\!\!\!\!\!\!\!(3) ~ ~ ~ \displaystyle B= \hat ふ A\)
 
without to indicate the argument.
 
without to indicate the argument.
   
 
The inverse of Fourier operator is also its Hermitian–conjugated, id est,
 
The inverse of Fourier operator is also its Hermitian–conjugated, id est,
: $\!\!\!\!\!\!\!\!\!\!\!\!\!(4) ~ ~ ~ \displaystyle \hat ふ^{-1}(A)(x)=\hat ふ^{*}(A)(x)=\frac{1}{\sqrt{2\pi}} \int_{- \infty}^{\infty} \exp( \mathrm{i} x y) A(y) ~ \mathrm{d} y $
+
: \(\!\!\!\!\!\!\!\!\!\!\!\!\!(4) ~ ~ ~ \displaystyle \hat ふ^{-1}(A)(x)=\hat ふ^{*}(A)(x)=\frac{1}{\sqrt{2\pi}} \int_{- \infty}^{\infty} \exp( \mathrm{i} x y) A(y) ~ \mathrm{d} y \)
   
For the integrable continuous functions $A$ and $B$, it is assumed that
+
For the integrable continuous functions \(A\) and \(B\), it is assumed that
: if $~A=\hat ふ(B)~$ then $~B=\hat ふ^* (A)~$
+
: if \(~A=\hat ふ(B)~\) then \(~B=\hat ふ^* (A)~\)
   
 
==General properties of the Fourier operator==
 
==General properties of the Fourier operator==
The Fourier operator is [[linear operator|linear]]: for complex constants $\alpha$ and $\beta$,
+
The Fourier operator is [[linear operator|linear]]: for complex constants \(\alpha\) and \(\beta\),
: $\!\!\!\!\!\!\!\!\!\!\!\!\!(6) ~ ~ ~ \displaystyle \hat ふ (\alpha A+\beta B)= \alpha \hat ふ(A) + \beta \hat ふ (B)$
+
: \(\!\!\!\!\!\!\!\!\!\!\!\!\!(6) ~ ~ ~ \displaystyle \hat ふ (\alpha A+\beta B)= \alpha \hat ふ(A) + \beta \hat ふ (B)\)
   
On the set of continuous functions $A$, the operatot product
+
On the set of continuous functions \(A\), the operatot product
: $\!\!\!\!\!\!\!\!\!\!\!\!\!(7) ~ ~ ~ \displaystyle \hat ふ ~\hat ふ ^*=I~$
+
: \(\!\!\!\!\!\!\!\!\!\!\!\!\!(7) ~ ~ ~ \displaystyle \hat ふ ~\hat ふ ^*=I~\)
 
is interpreted as [[identity operator]]. On the language of [[generalized function]]s, this can be expressed in the following way:
 
is interpreted as [[identity operator]]. On the language of [[generalized function]]s, this can be expressed in the following way:
: $\!\!\!\!\!\!\!\!\!\!\!\!\!(8) ~ ~ ~ \displaystyle \int_{-\infty}^{\infty} \exp(\mathrm {i} p x) ~\mathrm {d} x$ $=$ $ 2\pi ~\delta(p)$
+
: \(\!\!\!\!\!\!\!\!\!\!\!\!\!(8) ~ ~ ~ \displaystyle \int_{-\infty}^{\infty} \exp(\mathrm {i} p x) ~\mathrm {d} x\) \(=\) \( 2\pi ~\delta(p)\)
where $\delta$ is the Dirak's [[delta function]]. This can be seen substituting the integral representations for $\hat ふ$ and $\hat ふ ^*$
+
where \(\delta\) is the Dirak's [[delta function]]. This can be seen substituting the integral representations for \(\hat ふ\) and \(\hat ふ ^*\)
 
into the left hand side of equation (7).
 
into the left hand side of equation (7).
<!-- There is certain wiki–conflict of notations, because the names [[delta function]] and [[Delta function]] are interpreted as the same; threfore, it is not convenient to use motations $\Delta$ and $\delta$ in the same wiki. !-->
+
<!-- There is certain wiki–conflict of notations, because the names [[delta function]] and [[Delta function]] are interpreted as the same; threfore, it is not convenient to use motations \(\Delta\) and \(\delta\) in the same wiki. !-->
   
 
==Norm of the Fourier operator==
 
==Norm of the Fourier operator==
The norm $||A||$ of a function $A$ can be defined as
+
The norm \(||A||\) of a function \(A\) can be defined as
: $\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (9) ~ ~ ~ ||A||^2 = \int_{-\infty}^{\infty} |A(x)|^2 ~\mathrm{d} x$
+
: \(\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (9) ~ ~ ~ ||A||^2 = \int_{-\infty}^{\infty} |A(x)|^2 ~\mathrm{d} x\)
The norm of any function is assumed to be non–negative; $||A||\ge 0$.
+
The norm of any function is assumed to be non–negative; \(||A||\ge 0\).
   
 
The Fourier operator is [[unitary operator|unitary]], so, it preserves the [[norm of a function]]:
 
The Fourier operator is [[unitary operator|unitary]], so, it preserves the [[norm of a function]]:
: $\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (10) ~ ~ ~$ if $~ A=\mathcal{F}(B)~$ then $||A||=||B||$
+
: \(\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (10) ~ ~ ~\) if \(~ A=\mathcal{F}(B)~\) then \(||A||=||B||\)
   
 
The iterations of the Fourier operator ho not provide a wide variety, because
 
The iterations of the Fourier operator ho not provide a wide variety, because
: $\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (10.1) ~ ~ ~ \mathcal{F}^4= I$
+
: \(\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (10.1) ~ ~ ~ \mathcal{F}^4= I\)
   
In particular, for any absolutely integrable continuous function $A$, the linear combination
+
In particular, for any absolutely integrable continuous function \(A\), the linear combination
: $\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (10.2) ~ ~ ~ S(A)= A+ \mathcal{F} A+ \mathcal{F}^2 A+ \mathcal{F}^3 A$
+
: \(\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (10.2) ~ ~ ~ S(A)= A+ \mathcal{F} A+ \mathcal{F}^2 A+ \mathcal{F}^3 A\)
is self-Fourier function; $~S(A)~$ is eigenfunction]] of the Fourier operator $\mathcal{F}$ with eigenvalue unity.
+
is self-Fourier function; \(~S(A)~\) is eigenfunction]] of the Fourier operator \(\mathcal{F}\) with eigenvalue unity.
   
 
==Self–Fourier functions==
 
==Self–Fourier functions==
Function $A$ is called [[self-Fourier function]], if
+
Function \(A\) is called [[self-Fourier function]], if
: $\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (11) ~ ~ ~ \mathcal{F} A = A$
+
: \(\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (11) ~ ~ ~ \mathcal{F} A = A\)
   
 
All the self-Fourier functions are [[eigenfunction]] of the Fourier operator with eigenvalue unity.
 
All the self-Fourier functions are [[eigenfunction]] of the Fourier operator with eigenvalue unity.
 
Any self–Fourier function can be represented as series,
 
Any self–Fourier function can be represented as series,
: $\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (12) ~ ~ ~ A(x) ~=~ \sum_{n=0}^{\infty} ~c_n~ \mathrm{HermiteH}_{4n}\!(x)~ \exp(-x^2/2)$
+
: \(\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (12) ~ ~ ~ A(x) ~=~ \sum_{n=0}^{\infty} ~c_n~ \mathrm{HermiteH}_{4n}\!(x)~ \exp(-x^2/2)\)
where $\mathrm{HermiteH}$ are the [[Hermit polynomial]]s
+
where \(\mathrm{HermiteH}\) are the [[Hermit polynomial]]s
 
<ref name="wolfher">
 
<ref name="wolfher">
 
http://mathworld.wolfram.com/HermitePolynomial.html
 
http://mathworld.wolfram.com/HermitePolynomial.html
 
</ref>,
 
</ref>,
and $c$ are arbitrary complex coefficients; the sequence $c$ should decay quickly enough to provide the convergence of the series
+
and \(c\) are arbitrary complex coefficients; the sequence \(c\) should decay quickly enough to provide the convergence of the series
 
<ref name="carlos">
 
<ref name="carlos">
 
http://www.tandfonline.com/doi/abs/10.1080/09500349908231393#preview
 
http://www.tandfonline.com/doi/abs/10.1080/09500349908231393#preview
Line 70: Line 70:
 
On the second order characterization of ultrashort pulses. [[Journal of Modern Optics]], v.46, No.15, p.2069-2077 (1999).<!-- DOI: 10.1080/09500349908231393 !--> </ref>.
 
On the second order characterization of ultrashort pulses. [[Journal of Modern Optics]], v.46, No.15, p.2069-2077 (1999).<!-- DOI: 10.1080/09500349908231393 !--> </ref>.
   
In particular, the first three self-Fourier functions $A_0, A_4,A_8$ can be defined with
+
In particular, the first three self-Fourier functions \(A_0, A_4,A_8\) can be defined with
: $\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (13) ~ ~ ~ A_0(x)=\exp(-x^2/2)$
+
: \(\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (13) ~ ~ ~ A_0(x)=\exp(-x^2/2)\)
: $\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (14) ~ ~ ~ A_4(x)=\exp(-x^2/2) (x^4-3x^2)$
+
: \(\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (14) ~ ~ ~ A_4(x)=\exp(-x^2/2) (x^4-3x^2)\)
: $\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (15) ~ ~ ~ A_8(x)=\exp(-x^2/2) (x^8-14x^6+35x^4)$
+
: \(\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (15) ~ ~ ~ A_8(x)=\exp(-x^2/2) (x^8-14x^6+35x^4)\)
   
The self-Fourier functions are good for testing of the numerical implementations of the Fourier operator $\mathcal{F}$.
+
The self-Fourier functions are good for testing of the numerical implementations of the Fourier operator \(\mathcal{F}\).
   
 
==Numerical implementation of the Fourier operator==
 
==Numerical implementation of the Fourier operator==
   
[[File:FourierExampleGauss04Ta.png|720px|right|thumb| $\exp(-x^2/2)$, dashed; its representation at the grid of 4 nodes, blue, and the numerical Fourier, red]]
+
[[File:FourierExampleGauss04Ta.png|300px|right|thumb| \(\exp(-x^2/2)\), dashed; its representation at the grid of 4 nodes, blue, and the numerical Fourier, red]]
   
 
In order to approximate the Fourier operator, the [[Discrete Fourier]] operator is used.
 
In order to approximate the Fourier operator, the [[Discrete Fourier]] operator is used.
In this section, the numerical implementation is discussed. The [[C++]] implementation [[fafo.cin]] of the Fourier operator $\mathcal {F}$ is used to plot figures. Up to year 2011, it seems to be simplest and the most portable routine. This implementation is described below. The codes used to plot figures are supplied in the descriptions of the figures. (In [[TORI]], the figures are clickable.)
+
In this section, the numerical implementation is discussed. The [[C++]] implementation [[fafo.cin]] of the Fourier operator \(\mathcal {F}\) is used to plot figures. Up to year 2011, it seems to be simplest and the most portable routine. This implementation is described below. The codes used to plot figures are supplied in the descriptions of the figures. (In [[TORI]], the figures are clickable.)
   
There is no need to describe functions $f(x)\!=\!\sin(2x)$ , $f(x)\!=\!\sin(kx)$ , $f(x)\!=\!\sin(2 \pi x/T)$ and so on separately, it is sufficient to have function $\sin$. In the similar way, it is sufficient to describe the discrete implementation of the Fourier operator at some grid. Then, other implementations can be built-up with minimal modifications of the algorithm, shifting and scaling the argument of the function and applying the corresponding modifications to the Fourier transform.
+
There is no need to describe functions \(f(x)\!=\!\sin(2x)\) , \(f(x)\!=\!\sin(kx)\) , \(f(x)\!=\!\sin(2 \pi x/T)\) and so on separately, it is sufficient to have function \(\sin\). In the similar way, it is sufficient to describe the discrete implementation of the Fourier operator at some grid. Then, other implementations can be built-up with minimal modifications of the algorithm, shifting and scaling the argument of the function and applying the corresponding modifications to the Fourier transform.
   
For the nimber $N=2^m$ grid points, the step $d$ of the grid is chosen as follows:
+
For the nimber \(N=2^m\) grid points, the step \(d\) of the grid is chosen as follows:
: $\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (16) ~ ~ ~ d = \sqrt{2 \pi /N}$
+
: \(\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (16) ~ ~ ~ d = \sqrt{2 \pi /N}\)
   
The grid points $x_j$, $j=0..N$ are chosen in the following way:
+
The grid points \(x_j\), \(j=0..N\) are chosen in the following way:
: $\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (17) ~ ~ ~ x_j = (j-N/2) d ~$ for [[natural number]] $~j~$; $~0\le j < N$
+
: \(\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (17) ~ ~ ~ x_j = (j-N/2) d ~\) for [[natural number]] \(~j~\); \(~0\le j < N\)
   
At such a discretization, the node with number $N/2$ always corresponds to the argument zero. The 0th node is assumed at the left hand side of the
+
At such a discretization, the node with number \(N/2\) always corresponds to the argument zero. The 0th node is assumed at the left hand side of the
sampled range. However, it can be placed also at the right hand side as well, and interpreted as $x_{N}$. The algorithm makes no difference between these points. <!-- the function is approximated with periodic set of delta-functions).!-->
+
sampled range. However, it can be placed also at the right hand side as well, and interpreted as \(x_{N}\). The algorithm makes no difference between these points. <!-- the function is approximated with periodic set of delta-functions).!-->
   
The same grid is used both for the function and for its Fourier–transform. Functions $A$ and $B=F(A)$ are represented with the arrays;
+
The same grid is used both for the function and for its Fourier–transform. Functions \(A\) and \(B=F(A)\) are represented with the arrays;
: $\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (18) ~ ~ ~ A(x_j)=A_j~$ ; $~B(x_j)=B_j~$
+
: \(\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (18) ~ ~ ~ A(x_j)=A_j~\) ; \(~B(x_j)=B_j~\)
The approcimation of $B$ corresponds to the replacement of the integral to the discrete sum:
+
The approcimation of \(B\) corresponds to the replacement of the integral to the discrete sum:
: $\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (19) ~ ~ ~
+
: \(\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (19) ~ ~ ~
B_j=\frac{d}{\sqrt{2 \pi}} \sum_{n=0}^{N-1} A_n \exp( -\mathrm{i} ~ x_j ~ x_n) $
+
B_j=\frac{d}{\sqrt{2 \pi}} \sum_{n=0}^{N-1} A_n \exp( -\mathrm{i} ~ x_j ~ x_n) \)
   
It is convenient to chose $N=2^m$ for some natural number $m$; then the fast implementation of such a summation is especially simple.
+
It is convenient to chose \(N=2^m\) for some natural number \(m\); then the fast implementation of such a summation is especially simple.
   
For the testing of the algorithm, the transform of discrete analogy of the Gaussian exponential $A(x)\!=\!\exp(-x^2/2)$ is suggested at the figure above.
+
For the testing of the algorithm, the transform of discrete analogy of the Gaussian exponential \(A(x)\!=\!\exp(-x^2/2)\) is suggested at the figure above.
Such a Gaussian is self-Fourier function, and it coincides with its Fourier-transform. However, at small number of the grid points, $N\!=\!4$, the deviation of the blue segmented line (that represents the array $A$) deviates from the red line, that represents the array $B$ as the numeric transform of $A$.
+
Such a Gaussian is self-Fourier function, and it coincides with its Fourier-transform. However, at small number of the grid points, \(N\!=\!4\), the deviation of the blue segmented line (that represents the array \(A\)) deviates from the red line, that represents the array \(B\) as the numeric transform of \(A\).
At larger number $N$ of grid points, the strong zooming-in is necessary to see the deviation.
+
At larger number \(N\) of grid points, the strong zooming-in is necessary to see the deviation.
   
[[File:FourierExampleGauss16pol04Ta.png|900px|right|thumb|$A(x)\!=\!\exp(−x^2/2)(−3x^2+x^4)$, its discrete analogy $A$ with $N\!=\!16$ nodes and its numeric Fourier transform $B$; the deviation $B\!-\!A$ scaled with factor 100 is shown with the saw-like line]]
+
[[File:FourierExampleGauss16pol04Ta.png|300px|right|thumb|\(A(x)\!=\!\exp(−x^2/2)(−3x^2+x^4)\), its discrete analogy \(A\) with \(N\!=\!16\) nodes and its numeric Fourier transform \(B\); the deviation \(B\!-\!A\) scaled with factor 100 is shown with the saw-like line]]
 
A little bit more complicated example with self-Fourier function
 
A little bit more complicated example with self-Fourier function
: $\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (20) ~ ~ ~ A(x)\!=\!\exp(-x^2/2)(−3x^2+x^4)$
+
: \(\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (20) ~ ~ ~ A(x)\!=\!\exp(-x^2/2)(−3x^2+x^4)\)
is shown in figure at right in the same notations, as in previous figure, but $N\!=\!16$. In this case, the segmented lines for arrays $A$ and $B$ overlap so perfectly, that the deviation is not seen. This deviation
+
is shown in figure at right in the same notations, as in previous figure, but \(N\!=\!16\). In this case, the segmented lines for arrays \(A\) and \(B\) overlap so perfectly, that the deviation is not seen. This deviation
$A\!-\!B$ scaled with factor 100 is shown with the saw-like line along the abscissa axis. The deviation is of order of $10^{-3}$, and only in the 0th node of the grid it is a little bit larger, than $10^{-3}$.
+
\(A\!-\!B\) scaled with factor 100 is shown with the saw-like line along the abscissa axis. The deviation is of order of \(10^{-3}\), and only in the 0th node of the grid it is a little bit larger, than \(10^{-3}\).
   
The examples show, that the numerical approximation of the Fourier operator is much better, than the 1st order approximation of the function and its Fourier transform with the arrays $A$ and $B$, the deviation of the segmented line from the smooth Gaussian is much larger than the deviation of the initial array from its discrete transform.
+
The examples show, that the numerical approximation of the Fourier operator is much better, than the 1st order approximation of the function and its Fourier transform with the arrays \(A\) and \(B\), the deviation of the segmented line from the smooth Gaussian is much larger than the deviation of the initial array from its discrete transform.
   
 
The figures are clickable, and the generators are copypasted in the descriptions. Everyone may load the code and play with the discrete implementation of the Fourier operator for various input arrays, approximating various functions.
 
The figures are clickable, and the generators are copypasted in the descriptions. Everyone may load the code and play with the discrete implementation of the Fourier operator for various input arrays, approximating various functions.
Line 124: Line 124:
 
http://en.wikipedia.org/wiki/Fourier_transform
 
http://en.wikipedia.org/wiki/Fourier_transform
   
  +
==Keywords==
  +
[[CosFT]],
  +
[[FFT]],
  +
[[SinFT]]
  +
  +
 
[[Category:English]]
  +
[[Category:FFT]]
 
[[Category:Fourier]]
 
[[Category:Fourier]]
 
[[Category:Fourier transform]]
 
[[Category:Fourier transform]]
 
[[Category:Linear operators]]
 
[[Category:Linear operators]]
[[Category:Integral transforms]]
+
[[Category:Numerical recipes in C]]
  +
[[Category:Integral transform]]
 
[[Category:Quantun mechanics]]
 
[[Category:Quantun mechanics]]
[[Category:Articles in English]]
 

Latest revision as of 18:44, 30 July 2019

Fourier transform is linear integral transform with the exponential kernel.

Let some complex–valued function \(A\) be defined for real values of the argument, id est,

\(A : \mathbb R \mapsto \mathbb C\)

Then, function \(B : \mathbb R \mapsto \mathbb C\) can be defined with

\(\!\!\!\!\!\!\!\!\!\!\!\!\!(1) ~ ~ ~ \displaystyle B(x)= \frac{1}{\sqrt{2\pi}} \int_{- \infty}^{\infty} \exp( - \mathrm{i} x y) A(y) ~ \mathrm{d} y \)

If the integral converges, then, function \(B\) is called Fourier transform of function \(A\).

The Fourier transform is used in various sciences and, especially, in physics. In Quantum mechanics, function \(A\) may have sense of the wave function in the coordinate representation, then \(B\) corresponds to the momentum representation. Many equations can be solved using the Fourier Transform. Especially efficient is the Fourier transform in the consideration of the paraxial approximation of the wave equations.

The Fourier-transform (FT) is often confused to the Discrete Fourier Transform (DFT). The DFT can be considered as a FT of a function that can be represented as combination of equidistant delta–functions, while the FT can be represented as a fundamental sequence of the FTs with increasing of length of the array it deals with.

Fourier operator

On the equation (1), the Fourier operator \(ふ\) can be defined in the following way:

\(\!\!\!\!\!\!\!\!\!\!\!\!\!(2) ~ ~ ~ \displaystyle (\hat ふ A)(x)= \frac{1}{\sqrt{2\pi}} \int_{- \infty}^{\infty} \exp( - \mathrm{i} x y) A(y) ~ \mathrm{d} y \)

Then the equation (1) can be qritten as

\(\!\!\!\!\!\!\!\!\!\!\!\!\!(3) ~ ~ ~ \displaystyle B= \hat ふ A\)

without to indicate the argument.

The inverse of Fourier operator is also its Hermitian–conjugated, id est,

\(\!\!\!\!\!\!\!\!\!\!\!\!\!(4) ~ ~ ~ \displaystyle \hat ふ^{-1}(A)(x)=\hat ふ^{*}(A)(x)=\frac{1}{\sqrt{2\pi}} \int_{- \infty}^{\infty} \exp( \mathrm{i} x y) A(y) ~ \mathrm{d} y \)

For the integrable continuous functions \(A\) and \(B\), it is assumed that

if \(~A=\hat ふ(B)~\) then \(~B=\hat ふ^* (A)~\)

General properties of the Fourier operator

The Fourier operator is linear: for complex constants \(\alpha\) and \(\beta\),

\(\!\!\!\!\!\!\!\!\!\!\!\!\!(6) ~ ~ ~ \displaystyle \hat ふ (\alpha A+\beta B)= \alpha \hat ふ(A) + \beta \hat ふ (B)\)

On the set of continuous functions \(A\), the operatot product

\(\!\!\!\!\!\!\!\!\!\!\!\!\!(7) ~ ~ ~ \displaystyle \hat ふ ~\hat ふ ^*=I~\)

is interpreted as identity operator. On the language of generalized functions, this can be expressed in the following way:

\(\!\!\!\!\!\!\!\!\!\!\!\!\!(8) ~ ~ ~ \displaystyle \int_{-\infty}^{\infty} \exp(\mathrm {i} p x) ~\mathrm {d} x\) \(=\) \( 2\pi ~\delta(p)\)

where \(\delta\) is the Dirak's delta function. This can be seen substituting the integral representations for \(\hat ふ\) and \(\hat ふ ^*\) into the left hand side of equation (7).

Norm of the Fourier operator

The norm \(||A||\) of a function \(A\) can be defined as

\(\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (9) ~ ~ ~ ||A||^2 = \int_{-\infty}^{\infty} |A(x)|^2 ~\mathrm{d} x\)

The norm of any function is assumed to be non–negative; \(||A||\ge 0\).

The Fourier operator is unitary, so, it preserves the norm of a function:

\(\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (10) ~ ~ ~\) if \(~ A=\mathcal{F}(B)~\) then \(||A||=||B||\)

The iterations of the Fourier operator ho not provide a wide variety, because

\(\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (10.1) ~ ~ ~ \mathcal{F}^4= I\)

In particular, for any absolutely integrable continuous function \(A\), the linear combination

\(\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (10.2) ~ ~ ~ S(A)= A+ \mathcal{F} A+ \mathcal{F}^2 A+ \mathcal{F}^3 A\)

is self-Fourier function; \(~S(A)~\) is eigenfunction]] of the Fourier operator \(\mathcal{F}\) with eigenvalue unity.

Self–Fourier functions

Function \(A\) is called self-Fourier function, if

\(\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (11) ~ ~ ~ \mathcal{F} A = A\)

All the self-Fourier functions are eigenfunction of the Fourier operator with eigenvalue unity. Any self–Fourier function can be represented as series,

\(\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (12) ~ ~ ~ A(x) ~=~ \sum_{n=0}^{\infty} ~c_n~ \mathrm{HermiteH}_{4n}\!(x)~ \exp(-x^2/2)\)

where \(\mathrm{HermiteH}\) are the Hermit polynomials [1], and \(c\) are arbitrary complex coefficients; the sequence \(c\) should decay quickly enough to provide the convergence of the series [2].

In particular, the first three self-Fourier functions \(A_0, A_4,A_8\) can be defined with

\(\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (13) ~ ~ ~ A_0(x)=\exp(-x^2/2)\)
\(\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (14) ~ ~ ~ A_4(x)=\exp(-x^2/2) (x^4-3x^2)\)
\(\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (15) ~ ~ ~ A_8(x)=\exp(-x^2/2) (x^8-14x^6+35x^4)\)

The self-Fourier functions are good for testing of the numerical implementations of the Fourier operator \(\mathcal{F}\).

Numerical implementation of the Fourier operator

\(\exp(-x^2/2)\), dashed; its representation at the grid of 4 nodes, blue, and the numerical Fourier, red

In order to approximate the Fourier operator, the Discrete Fourier operator is used. In this section, the numerical implementation is discussed. The C++ implementation fafo.cin of the Fourier operator \(\mathcal {F}\) is used to plot figures. Up to year 2011, it seems to be simplest and the most portable routine. This implementation is described below. The codes used to plot figures are supplied in the descriptions of the figures. (In TORI, the figures are clickable.)

There is no need to describe functions \(f(x)\!=\!\sin(2x)\) , \(f(x)\!=\!\sin(kx)\) , \(f(x)\!=\!\sin(2 \pi x/T)\) and so on separately, it is sufficient to have function \(\sin\). In the similar way, it is sufficient to describe the discrete implementation of the Fourier operator at some grid. Then, other implementations can be built-up with minimal modifications of the algorithm, shifting and scaling the argument of the function and applying the corresponding modifications to the Fourier transform.

For the nimber \(N=2^m\) grid points, the step \(d\) of the grid is chosen as follows:

\(\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (16) ~ ~ ~ d = \sqrt{2 \pi /N}\)

The grid points \(x_j\), \(j=0..N\) are chosen in the following way:

\(\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (17) ~ ~ ~ x_j = (j-N/2) d ~\) for natural number \(~j~\); \(~0\le j < N\)

At such a discretization, the node with number \(N/2\) always corresponds to the argument zero. The 0th node is assumed at the left hand side of the sampled range. However, it can be placed also at the right hand side as well, and interpreted as \(x_{N}\). The algorithm makes no difference between these points.

The same grid is used both for the function and for its Fourier–transform. Functions \(A\) and \(B=F(A)\) are represented with the arrays;

\(\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (18) ~ ~ ~ A(x_j)=A_j~\) ; \(~B(x_j)=B_j~\)

The approcimation of \(B\) corresponds to the replacement of the integral to the discrete sum:

\(\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (19) ~ ~ ~ B_j=\frac{d}{\sqrt{2 \pi}} \sum_{n=0}^{N-1} A_n \exp( -\mathrm{i} ~ x_j ~ x_n) \)

It is convenient to chose \(N=2^m\) for some natural number \(m\); then the fast implementation of such a summation is especially simple.

For the testing of the algorithm, the transform of discrete analogy of the Gaussian exponential \(A(x)\!=\!\exp(-x^2/2)\) is suggested at the figure above. Such a Gaussian is self-Fourier function, and it coincides with its Fourier-transform. However, at small number of the grid points, \(N\!=\!4\), the deviation of the blue segmented line (that represents the array \(A\)) deviates from the red line, that represents the array \(B\) as the numeric transform of \(A\). At larger number \(N\) of grid points, the strong zooming-in is necessary to see the deviation.

\(A(x)\!=\!\exp(−x^2/2)(−3x^2+x^4)\), its discrete analogy \(A\) with \(N\!=\!16\) nodes and its numeric Fourier transform \(B\); the deviation \(B\!-\!A\) scaled with factor 100 is shown with the saw-like line

A little bit more complicated example with self-Fourier function

\(\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\displaystyle (20) ~ ~ ~ A(x)\!=\!\exp(-x^2/2)(−3x^2+x^4)\)

is shown in figure at right in the same notations, as in previous figure, but \(N\!=\!16\). In this case, the segmented lines for arrays \(A\) and \(B\) overlap so perfectly, that the deviation is not seen. This deviation \(A\!-\!B\) scaled with factor 100 is shown with the saw-like line along the abscissa axis. The deviation is of order of \(10^{-3}\), and only in the 0th node of the grid it is a little bit larger, than \(10^{-3}\).

The examples show, that the numerical approximation of the Fourier operator is much better, than the 1st order approximation of the function and its Fourier transform with the arrays \(A\) and \(B\), the deviation of the segmented line from the smooth Gaussian is much larger than the deviation of the initial array from its discrete transform.

The figures are clickable, and the generators are copypasted in the descriptions. Everyone may load the code and play with the discrete implementation of the Fourier operator for various input arrays, approximating various functions.

References

  1. http://mathworld.wolfram.com/HermitePolynomial.html
  2. http://www.tandfonline.com/doi/abs/10.1080/09500349908231393#preview R.Ortega, C.J.Román, D.Kouznetsov. On the second order characterization of ultrashort pulses. Journal of Modern Optics, v.46, No.15, p.2069-2077 (1999).

http://mathworld.wolfram.com/FourierTransform.html

http://en.wikipedia.org/wiki/Fourier_transform

Keywords

CosFT, FFT, SinFT