Difference between revisions of "File:Ack4c.jpg"
(Importing image file) |
|||
Line 1: | Line 1: | ||
+ | [[Complex map]] of [[tetration to Sheldon base]] $b\!=\! |
||
− | Importing image file |
||
+ | 1.52598338517+0.0178411853321 i$. |
||
+ | |||
+ | $u\!+\!\mathrm i v=\mathrm{tet}_b(x\!+\!\mathrm i y)$ |
||
+ | |||
+ | Another version of this image is loaded as http://mizugadro.mydns.jp/t/index.php/File:Tetsheldonmap03.png |
||
+ | ==[[C++]] Generator of map== |
||
+ | Files |
||
+ | [[ado.cin]], |
||
+ | [[conto.cin]], |
||
+ | [[filog.cin]], |
||
+ | [[TetSheldonIma.inc]], |
||
+ | [[GLxw2048.inc]] |
||
+ | should be loaded to the working directory in order to compile the code below. |
||
+ | <poem><nomathjax><nowiki> |
||
+ | #include <math.h> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | // using namespace std; |
||
+ | #include <complex> |
||
+ | typedef std::complex<double> z_type; |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | #include "conto.cin" |
||
+ | #include "filog.cin" |
||
+ | |||
+ | z_type b=z_type( 1.5259833851700000, 0.0178411853321000); |
||
+ | z_type a=log(b); |
||
+ | z_type Zo=Filog(a); |
||
+ | z_type Zc=conj(Filog(conj(a))); |
||
+ | DB A=32.; |
||
+ | |||
+ | z_type tetb(z_type z){ int k; DB t; z_type c, cu,cd; |
||
+ | #include "GLxw2048.inc" |
||
+ | int K=2048; |
||
+ | //#include "ima6.inc" |
||
+ | #include "TetSheldonIma.inc" |
||
+ | z_type E[2048],G[2048]; |
||
+ | DO(k,K){c=F[k]; E[k]=log(c)/a; G[k]=exp(a*c);} |
||
+ | c=0.; |
||
+ | z+=z_type(0.1196573712872846, 0.1299776198056910); |
||
+ | DO(k,K){t=A*GLx[k];c+=GLw[k]*(G[k]/(z_type( 1.,t)-z)-E[k]/(z_type(-1.,t)-z));} |
||
+ | cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) ); |
||
+ | cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) ); |
||
+ | c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd; |
||
+ | return c;} |
||
+ | |||
+ | int main(){ int j,k,m,m1,n; DB x,y, p,q, t; z_type z,c,d; |
||
+ | //int M=161,M1=M+1; |
||
+ | int M=601,M1=M+1; |
||
+ | int N=461,N1=N+1; |
||
+ | |||
+ | DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
||
+ | char v[M1*N1]; // v is working array |
||
+ | FILE *o;o=fopen("tetsheldonmap.eps","w");ado(o,602,202); |
||
+ | fprintf(o,"301 101 translate\n 10 10 scale\n"); |
||
+ | DO(m,M1)X[m]=-30.+.1*(m); |
||
+ | DO(n,200)Y[n]=-10.+.05*n; |
||
+ | Y[200]=-.01; |
||
+ | Y[201]= .01; |
||
+ | for(n=202;n<N1;n++) Y[n]=-10.+.05*(n-1.); |
||
+ | for(m=-30;m<31;m++){if(m==0){M(m,-10.2)L(m,10.2)} else{M(m,-10)L(m,10)}} |
||
+ | for(n=-10;n<11;n++){ M( -30,n)L(30,n)} |
||
+ | fprintf(o,".008 W 0 0 0 RGB S\n"); |
||
+ | DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} |
||
+ | |||
+ | DO(n,N1){y=Y[n]; |
||
+ | for(m=295;m<305;m++) |
||
+ | {x=X[m]; //printf("%5.2f\n",x); |
||
+ | z=z_type(x,y); |
||
+ | c=tetb(z); |
||
+ | p=Re(c);q=Im(c); |
||
+ | if(p>-99. && p<99. && q>-99. && q<99. ){ g[m*N1+n]=p;f[m*N1+n]=q;} |
||
+ | d=c; |
||
+ | for(k=1;k<31;k++) |
||
+ | { m1=m+k*10; if(m1>M) break; |
||
+ | d=exp(a*d); |
||
+ | p=Re(d);q=Im(d); |
||
+ | if(p>-99. && p<99. && q>-99. && q<99. ){ g[m1*N1+n]=p;f[m1*N1+n]=q;} |
||
+ | } |
||
+ | d=c; |
||
+ | for(k=1;k<31;k++) |
||
+ | { m1=m-k*10; if(m1<0) break; |
||
+ | d=log(d)/a; |
||
+ | p=Re(d);q=Im(d); |
||
+ | if(p>-99. && p<99. && q>-99. && q<99. ){ g[m1*N1+n]=p;f[m1*N1+n]=q;} |
||
+ | } |
||
+ | }} |
||
+ | |||
+ | fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=1;q=.5; |
||
+ | for(m=-10;m<10;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".02 W 0 .6 0 RGB S\n"); |
||
+ | for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".02 W .9 0 0 RGB S\n"); |
||
+ | for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".02 W 0 0 .9 RGB S\n"); |
||
+ | for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".08 W .9 0 0 RGB S\n"); |
||
+ | for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".08 W 0 0 .9 RGB S\n"); |
||
+ | conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".08 W .6 0 .6 RGB S\n"); |
||
+ | for(m=-9;m<10;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".08 W 0 0 0 RGB S\n"); |
||
+ | // y= 0; for(m=0;m<260;m+=6) {x=-2.-.1*m; M(x,y) L(x-.1,y)} |
||
+ | // fprintf(o,".07 W 1 .5 0 RGB S\n"); |
||
+ | // y= 0; for(m=3;m<260;m+=6) {x=-2-.1*m; M(x,y) L(x-.1,y)} |
||
+ | // fprintf(o,".07 W 0 .5 1 RGB S\n"); |
||
+ | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
+ | system("epstopdf tetsheldonmap.eps"); |
||
+ | system( "open tetsheldonmap.pdf"); |
||
+ | getchar(); system("killall Preview"); |
||
+ | } |
||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==[[Latex]] Generator of labels]== |
||
+ | <poem><nomathjax><nowiki> |
||
+ | \documentclass{amsproc} |
||
+ | \usepackage{graphicx} % Use pdf, png, jpg, or eps§ with pdflatex; use eps in DVI mode\usepackage{amssymb} |
||
+ | \usepackage{rotating} |
||
+ | \usepackage{hyperref} |
||
+ | \newcommand \be {\begin{eqnarray}} |
||
+ | \newcommand \ee {\end{eqnarray} } |
||
+ | \newcommand \sx {\scalebox} |
||
+ | \newcommand \rme {{\rm e}} %%makes the base of natural logarithms Roman font |
||
+ | %\newcommand \rme {{e}} %%makes the base of natural logarithms Italics font; choose one of these |
||
+ | \newcommand \rmi {{\rm i}} %%imaginary unity is always roman font |
||
+ | \newcommand \ds {\displaystyle} |
||
+ | \newcommand \bN {\mathbb{N}} |
||
+ | \newcommand \bC {\mathbb{C}} |
||
+ | \newcommand \bR {\mathbb{R}} |
||
+ | \newcommand \cO {\mathcal{O}} |
||
+ | \newcommand \cF {\mathcal{F}} |
||
+ | \newcommand \rot {\begin{rotate}} |
||
+ | \newcommand \ero {\end{rotate}} |
||
+ | \newcommand \nS {\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} |
||
+ | \newcommand \pS {{~}~{~}} |
||
+ | \newcommand \fac {\mathrm{Factorial}} |
||
+ | \newcommand {\rf}[1] {(\ref{#1})} |
||
+ | \newcommand{\iL}[1] {~\label{#1}\pS \rm[#1]\nS} %make the labels visible |
||
+ | %\newcommand{\iL}[1] {\label{#1}} %make the labels invisible; choose one of these options |
||
+ | \newcommand \eL[1] {\iL{#1}\ee} |
||
+ | \newcommand \ing \includegraphics |
||
+ | \newcommand \tet {\mathrm{tet}} |
||
+ | |||
+ | \usepackage{geometry} |
||
+ | %\topmargin -94pt |
||
+ | \topmargin -97pt |
||
+ | \oddsidemargin -87pt |
||
+ | \paperwidth 618pt |
||
+ | %\paperheight 216pt |
||
+ | \paperheight 214pt |
||
+ | |||
+ | \begin{document} %\title{AMS Proceedings Series Sample} |
||
+ | |||
+ | \newcommand \mapax { |
||
+ | \put(2,206){\sx{1.2}{$y$}} |
||
+ | \put(2,188){\sx{1.2}{$8$}} |
||
+ | \put(2,168){\sx{1.2}{$6$}} |
||
+ | \put(2,148){\sx{1.2}{$4$}} |
||
+ | \put(2,128){\sx{1.2}{$2$}} |
||
+ | \put(2,108){\sx{1.2}{$0$}} |
||
+ | \put(-6,88){\sx{1.2}{$-2$}} |
||
+ | \put(-6,68){\sx{1.2}{$-4$}} |
||
+ | \put(-6,48){\sx{1.2}{$-6$}} |
||
+ | \put(-6,28){\sx{1.2}{$-8$}} |
||
+ | \put(-1,1){\sx{1.2}{$-30$}} |
||
+ | \put( 49,1){\sx{1.2}{$-25$}} |
||
+ | \put( 99,1){\sx{1.2}{$-20$}} |
||
+ | \put(149,1){\sx{1.2}{$-15$}} |
||
+ | \put(199,1){\sx{1.2}{$-10$}} |
||
+ | \put(252,1){\sx{1.2}{$-5$}} |
||
+ | \put(309,1){\sx{1.2}{$0$}} |
||
+ | \put(329,1){\sx{1.2}{$2$}} |
||
+ | \put(349,1){\sx{1.2}{$4$}} |
||
+ | \put(369,1){\sx{1.2}{$6$}} |
||
+ | \put(389,1){\sx{1.2}{$8$}} |
||
+ | \put(407,1){\sx{1.2}{$10$}} |
||
+ | \put(457,1){\sx{1.2}{$15$}} |
||
+ | \put(507,1){\sx{1.2}{$20$}} |
||
+ | \put(557,1){\sx{1.2}{$25$}} |
||
+ | \put(607,1){\sx{1.2}{$x$}} |
||
+ | } |
||
+ | %\flushright{$b=1.5 ~$} |
||
+ | %\sx{.586} |
||
+ | {\begin{picture}(620,216) \mapax \put(10,10){\ing{tet15ma}} %%%%%%%% |
||
+ | \put(25,108.4){\sx{1.4}{\bf cut}} \put(502,108.4){\sx{1.4}{$v\!=\!0$}} |
||
+ | % |
||
+ | \put(24,194){\sx{1.5}{$u\!+\!\mathrm i v \approx 2.306009391950\!+\! 1.081988656014\,\mathrm i$}} |
||
+ | \put(24,19){\sx{1.5}{$u\!+\!\mathrm i v \approx 2.306009391950\!-\! 1.081988656014\,\mathrm i$}} |
||
+ | %\put(20,16){\sx{1.5}{$u\!+\!\mathrm i v \approx 2.3\!-\!1.1\,\mathrm i$}} |
||
+ | % |
||
+ | \multiput(50,160)(143,10.4){4}{\sx{1.4}{$v\!=\!1$}}%% |
||
+ | \multiput(48,129)(143,10.4){4}{\sx{1.4}{$v\!=\!0.8$}}%% |
||
+ | \put(342,108){\sx{1.4}{$v\!=\!0$}}%% |
||
+ | \multiput(46,56)(143,-10.4){4}{\sx{1.4}{$v\!=\!-1$}}%% |
||
+ | |||
+ | \put(341,96){\sx{1.4}{\rot{90}$u\!=\!2$\ero}} |
||
+ | \put(381,96){\sx{1.4}{\rot{90}$u\!=\!3$\ero}} |
||
+ | \end{picture}}%%%%%%%%% |
||
+ | \end{document} |
||
+ | \caption{$u\!+\!\mathrm i v\!=\!\mathrm{tet}_b(x\!+\!\mathrm i y)$ for |
||
+ | $b\!=\!\sqrt{2} |
||
+ | %\!\approx\! 1.41 |
||
+ | $, |
||
+ | $b\!=\!\exp(1/\mathrm e) |
||
+ | %\!\approx\! 1.44 |
||
+ | $, and |
||
+ | $b\!=\!1.5~$ |
||
+ | \label{maps1}} |
||
+ | \end{figure} |
||
+ | \end{document} |
||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==Refrences== |
||
+ | |||
+ | http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html <br> |
||
+ | http://www.ils.uec.ac.jp/~dima/PAPERS/2009analuxpRepri.pdf<br> |
||
+ | http://mizugadro.mydns.jp/PAPERS/2009analuxpRepri.pdf |
||
+ | D.Kouznetsov. (2009). Solutions of F(z+1)=exp(F(z)) in the complex plane. Mathematics of Computation, 78: 1647-1670. DOI:10.1090/S0025-5718-09-02188-7. |
||
+ | |||
+ | https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0 <br> |
||
+ | http://www.ils.uec.ac.jp/~dima/BOOK/202.pdf<br> |
||
+ | http://mizugadro.mydns.jp/BOOK/202.pdf |
||
+ | Д.Кузнецов. [[Суперфункции]]. [[Lambert Academic Publishing]], 2014. (In Russian) |
||
+ | |||
+ | D.Kouznetsov. Holomorphic ackermanns. 2015, in preparation. |
||
+ | |||
+ | [[Category:Book]] |
||
+ | [[Category:BookPlot]] |
||
+ | [[Category:Tetration]] |
||
+ | [[Category:Sheldon base]] |
||
+ | [[Category:Complex map]] |
||
+ | [[Category:AMS]] |
||
+ | [[Category:C++]] |
||
+ | [[Category:Latex]] |
Latest revision as of 08:28, 1 December 2018
Complex map of tetration to Sheldon base $b\!=\! 1.52598338517+0.0178411853321 i$.
$u\!+\!\mathrm i v=\mathrm{tet}_b(x\!+\!\mathrm i y)$
Another version of this image is loaded as http://mizugadro.mydns.jp/t/index.php/File:Tetsheldonmap03.png
C++ Generator of map
Files ado.cin, conto.cin, filog.cin, TetSheldonIma.inc, GLxw2048.inc should be loaded to the working directory in order to compile the code below.
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
// using namespace std;
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
#include "filog.cin"
z_type b=z_type( 1.5259833851700000, 0.0178411853321000);
z_type a=log(b);
z_type Zo=Filog(a);
z_type Zc=conj(Filog(conj(a)));
DB A=32.;
z_type tetb(z_type z){ int k; DB t; z_type c, cu,cd;
#include "GLxw2048.inc"
int K=2048;
//#include "ima6.inc"
#include "TetSheldonIma.inc"
z_type E[2048],G[2048];
DO(k,K){c=F[k]; E[k]=log(c)/a; G[k]=exp(a*c);}
c=0.;
z+=z_type(0.1196573712872846, 0.1299776198056910);
DO(k,K){t=A*GLx[k];c+=GLw[k]*(G[k]/(z_type( 1.,t)-z)-E[k]/(z_type(-1.,t)-z));}
cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) );
cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) );
c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd;
return c;}
int main(){ int j,k,m,m1,n; DB x,y, p,q, t; z_type z,c,d;
//int M=161,M1=M+1;
int M=601,M1=M+1;
int N=461,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
FILE *o;o=fopen("tetsheldonmap.eps","w");ado(o,602,202);
fprintf(o,"301 101 translate\n 10 10 scale\n");
DO(m,M1)X[m]=-30.+.1*(m);
DO(n,200)Y[n]=-10.+.05*n;
Y[200]=-.01;
Y[201]= .01;
for(n=202;n<N1;n++) Y[n]=-10.+.05*(n-1.);
for(m=-30;m<31;m++){if(m==0){M(m,-10.2)L(m,10.2)} else{M(m,-10)L(m,10)}}
for(n=-10;n<11;n++){ M( -30,n)L(30,n)}
fprintf(o,".008 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;}
DO(n,N1){y=Y[n];
for(m=295;m<305;m++)
{x=X[m]; //printf("%5.2f\n",x);
z=z_type(x,y);
c=tetb(z);
p=Re(c);q=Im(c);
if(p>-99. && p<99. && q>-99. && q<99. ){ g[m*N1+n]=p;f[m*N1+n]=q;}
d=c;
for(k=1;k<31;k++)
{ m1=m+k*10; if(m1>M) break;
d=exp(a*d);
p=Re(d);q=Im(d);
if(p>-99. && p<99. && q>-99. && q<99. ){ g[m1*N1+n]=p;f[m1*N1+n]=q;}
}
d=c;
for(k=1;k<31;k++)
{ m1=m-k*10; if(m1<0) break;
d=log(d)/a;
p=Re(d);q=Im(d);
if(p>-99. && p<99. && q>-99. && q<99. ){ g[m1*N1+n]=p;f[m1*N1+n]=q;}
}
}}
fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=1;q=.5;
for(m=-10;m<10;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".02 W 0 .6 0 RGB S\n");
for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".02 W .9 0 0 RGB S\n");
for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".02 W 0 0 .9 RGB S\n");
for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".08 W .9 0 0 RGB S\n");
for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".08 W 0 0 .9 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".08 W .6 0 .6 RGB S\n");
for(m=-9;m<10;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".08 W 0 0 0 RGB S\n");
// y= 0; for(m=0;m<260;m+=6) {x=-2.-.1*m; M(x,y) L(x-.1,y)}
// fprintf(o,".07 W 1 .5 0 RGB S\n");
// y= 0; for(m=3;m<260;m+=6) {x=-2-.1*m; M(x,y) L(x-.1,y)}
// fprintf(o,".07 W 0 .5 1 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf tetsheldonmap.eps");
system( "open tetsheldonmap.pdf");
getchar(); system("killall Preview");
}
Latex Generator of labels]
\documentclass{amsproc}
\usepackage{graphicx} % Use pdf, png, jpg, or eps§ with pdflatex; use eps in DVI mode\usepackage{amssymb}
\usepackage{rotating}
\usepackage{hyperref}
\newcommand \be {\begin{eqnarray}}
\newcommand \ee {\end{eqnarray} }
\newcommand \sx {\scalebox}
\newcommand \rme {{\rm e}} %%makes the base of natural logarithms Roman font
%\newcommand \rme {{e}} %%makes the base of natural logarithms Italics font; choose one of these
\newcommand \rmi {{\rm i}} %%imaginary unity is always roman font
\newcommand \ds {\displaystyle}
\newcommand \bN {\mathbb{N}}
\newcommand \bC {\mathbb{C}}
\newcommand \bR {\mathbb{R}}
\newcommand \cO {\mathcal{O}}
\newcommand \cF {\mathcal{F}}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\newcommand \nS {\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!}
\newcommand \pS {{~}~{~}}
\newcommand \fac {\mathrm{Factorial}}
\newcommand {\rf}[1] {(\ref{#1})}
\newcommand{\iL}[1] {~\label{#1}\pS \rm[#1]\nS} %make the labels visible
%\newcommand{\iL}[1] {\label{#1}} %make the labels invisible; choose one of these options
\newcommand \eL[1] {\iL{#1}\ee}
\newcommand \ing \includegraphics
\newcommand \tet {\mathrm{tet}}
\usepackage{geometry}
%\topmargin -94pt
\topmargin -97pt
\oddsidemargin -87pt
\paperwidth 618pt
%\paperheight 216pt
\paperheight 214pt
\begin{document} %\title{AMS Proceedings Series Sample}
\newcommand \mapax {
\put(2,206){\sx{1.2}{$y$}}
\put(2,188){\sx{1.2}{$8$}}
\put(2,168){\sx{1.2}{$6$}}
\put(2,148){\sx{1.2}{$4$}}
\put(2,128){\sx{1.2}{$2$}}
\put(2,108){\sx{1.2}{$0$}}
\put(-6,88){\sx{1.2}{$-2$}}
\put(-6,68){\sx{1.2}{$-4$}}
\put(-6,48){\sx{1.2}{$-6$}}
\put(-6,28){\sx{1.2}{$-8$}}
\put(-1,1){\sx{1.2}{$-30$}}
\put( 49,1){\sx{1.2}{$-25$}}
\put( 99,1){\sx{1.2}{$-20$}}
\put(149,1){\sx{1.2}{$-15$}}
\put(199,1){\sx{1.2}{$-10$}}
\put(252,1){\sx{1.2}{$-5$}}
\put(309,1){\sx{1.2}{$0$}}
\put(329,1){\sx{1.2}{$2$}}
\put(349,1){\sx{1.2}{$4$}}
\put(369,1){\sx{1.2}{$6$}}
\put(389,1){\sx{1.2}{$8$}}
\put(407,1){\sx{1.2}{$10$}}
\put(457,1){\sx{1.2}{$15$}}
\put(507,1){\sx{1.2}{$20$}}
\put(557,1){\sx{1.2}{$25$}}
\put(607,1){\sx{1.2}{$x$}}
}
%\flushright{$b=1.5 ~$}
%\sx{.586}
{\begin{picture}(620,216) \mapax \put(10,10){\ing{tet15ma}} %%%%%%%%
\put(25,108.4){\sx{1.4}{\bf cut}} \put(502,108.4){\sx{1.4}{$v\!=\!0$}}
%
\put(24,194){\sx{1.5}{$u\!+\!\mathrm i v \approx 2.306009391950\!+\! 1.081988656014\,\mathrm i$}}
\put(24,19){\sx{1.5}{$u\!+\!\mathrm i v \approx 2.306009391950\!-\! 1.081988656014\,\mathrm i$}}
%\put(20,16){\sx{1.5}{$u\!+\!\mathrm i v \approx 2.3\!-\!1.1\,\mathrm i$}}
%
\multiput(50,160)(143,10.4){4}{\sx{1.4}{$v\!=\!1$}}%%
\multiput(48,129)(143,10.4){4}{\sx{1.4}{$v\!=\!0.8$}}%%
\put(342,108){\sx{1.4}{$v\!=\!0$}}%%
\multiput(46,56)(143,-10.4){4}{\sx{1.4}{$v\!=\!-1$}}%%
\put(341,96){\sx{1.4}{\rot{90}$u\!=\!2$\ero}}
\put(381,96){\sx{1.4}{\rot{90}$u\!=\!3$\ero}}
\end{picture}}%%%%%%%%%
\end{document}
\caption{$u\!+\!\mathrm i v\!=\!\mathrm{tet}_b(x\!+\!\mathrm i y)$ for
$b\!=\!\sqrt{2}
%\!\approx\! 1.41
$,
$b\!=\!\exp(1/\mathrm e)
%\!\approx\! 1.44
$, and
$b\!=\!1.5~$
\label{maps1}}
\end{figure}
\end{document}
Refrences
http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html
http://www.ils.uec.ac.jp/~dima/PAPERS/2009analuxpRepri.pdf
http://mizugadro.mydns.jp/PAPERS/2009analuxpRepri.pdf
D.Kouznetsov. (2009). Solutions of F(z+1)=exp(F(z)) in the complex plane. Mathematics of Computation, 78: 1647-1670. DOI:10.1090/S0025-5718-09-02188-7.
https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0
http://www.ils.uec.ac.jp/~dima/BOOK/202.pdf
http://mizugadro.mydns.jp/BOOK/202.pdf
Д.Кузнецов. Суперфункции. Lambert Academic Publishing, 2014. (In Russian)
D.Kouznetsov. Holomorphic ackermanns. 2015, in preparation.
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 06:10, 1 December 2018 | 5,130 × 1,760 (1.92 MB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following page uses this file: