Search results

Jump to: navigation, search
  • [[File:Arqnem20zt.jpg|400px|thumb|\(u\!+\!\mathrm i v=\mathrm{ArqNem}_{2}(x\!+\!\mathrm i y)\)]] \(q\!=\!2\).
    7 KB (1,319 words) - 18:46, 30 July 2019
  • ...pg|200px|thumb|Thick green curve: \(y=\eta^x\); thin red curve: \(y=(\sqrt{2})^x\)]] These pictures look similar to those for the case \(b=\sqrt{2}\approx 1.414\), see article [[Base sqrt2]].
    4 KB (559 words) - 17:10, 10 August 2020
  • ...apT.png|300px|thumb|[[Complex map|Map]] of [[exponent]] to base \(b=\sqrt{2}\); lines of constant \(u\) and lines of constant \(v\) show ...00.jpg|300px|thumb|[[Complex map|Map]] of [[Logarithm]] to base \(b=\sqrt{2}\); lines of constant \(u\) and lines of constant \(v\) show
    3 KB (557 words) - 18:46, 30 July 2019
  • \(T_{n+1}(x)=2 x T_n(x)-T_{n-1}(x)\) ...)\, \sin(x\, y)\, \frac{\mathrm d x}{\sqrt{1\!-\!x^2}} = (-1)^n \frac{\pi}{2}\, J_{2n+1}(y)
    1 KB (186 words) - 18:48, 30 July 2019
  • </ref> and \(~y=\sin^n(\pi/2)-\sin^n(x)~\) with \(~n\!=\!100~\) http://www.ams.org/journals/mcom/2010-79-271/S0025-5718-10-02342-2/home.html<br>
    7 KB (1,031 words) - 03:16, 12 May 2021
  • ...ansform, refers to the integral transform with kernel \(K(x,y)=\sqrt{\frac{2}{\pi}} \cos(xy)\); \(\displaystyle g(x)=\,\)[[CosFT]]\(f\,(x) \displaystyle =\sqrt{\frac{2}{\pi}} \int_0^\infty \cos(xy) \, f(y) \, \mathrm d y\)
    3 KB (468 words) - 18:47, 30 July 2019
  • X[n_] = BesselJZero[0,n]/Sqrt[S]; W[n_] = Sqrt[2./S]/Abs[BesselJ[1, BesselJZero[0,n]]];
    8 KB (1,153 words) - 18:44, 30 July 2019
  • [[ackermann]]\(_{2,x}(y)=x\, y\) \frac{\exp(\mathrm i x) + \exp(-\mathrm i x)}{2}\)
    3 KB (496 words) - 18:45, 30 July 2019
  • Let \(~ T(z)=z+b z^2 + c z^3+..\) T[z_] = z + b z^2 + c z^3;
    11 KB (1,715 words) - 18:44, 30 July 2019
  • \( F''+ 2 \mathrm i \dot F=0\) then, assuming some large positive \(M\), expression \(M^2 z/k\) has sense of the coordinate along the propagation of wave, and \(M x/
    8 KB (1,216 words) - 18:43, 30 July 2019
  • ....jpg|300px|thumb| Normalised [[Hermite polynomial]]s, \(y=h_n(x)\) for \(n=2,3,4,5,6\)]] \(H_m(x)=(-1)^m \exp(-x^2) \partial_x^m \exp(-x^2)\)
    4 KB (628 words) - 18:47, 30 July 2019
  • \(~ ~\mathrm{kori}(z)=\displaystyle \frac{J_0\big(L\, \sqrt{x}\big)}{1-z}\) where \(L=\,\) [[BesselJZero]]\([0,1]\approx 2.4048255576957727686\)
    14 KB (1,943 words) - 18:48, 30 July 2019
  • \(\mathrm{kori}(z)=\displaystyle \frac{J_0\big( L_1 \sqrt{z} \big)}{1-z}\) where \(L_1\approx 2.4\) is first zero of the Bessel function \(J_0\). The corresponding limit f
    2 KB (328 words) - 10:27, 20 July 2020
  • ...tional aproximation of function [[kori]]\((x)=\displaystyle \frac{J_0(L_1 \sqrt{x})}{1\!-\!x}\) ...implementation of integrals with function [[nori]]\((x)=\,\)[[kori]]\((x)^2\).
    4 KB (644 words) - 18:47, 30 July 2019
  • 1 & 1-z & \frac{1}{2} \left(z^2-4 z+2\right) & \frac{1}{6} \left(-z^3+9 z^2-18 z+6\right) &
    5 KB (759 words) - 18:44, 30 July 2019
  • ...ga}(x)=\displaystyle 2 \int_0^\infty \mathrm{mori}(p )^2 \exp(\mathrm i p^2 x) \, p \,\mathrm d p\) [[mori]]\((p)=\displaystyle \frac{J_0(L p)}{1-p^2}\)
    8 KB (1,256 words) - 18:44, 30 July 2019
  • http://www.ams.org/journals/mcom/2010-79-271/S0025-5718-10-02342-2/home.html<br> ...H.Trappmann. Portrait of the four regular super-exponentials to base sqrt(2). Mathematics of Computation, 2010, v.79, p.1727-1756.
    2 KB (344 words) - 07:02, 1 December 2018
  • DB L1=2.404825557695772768621631879326454643124; x=1./(z*z); t=-sqrt(2./M_PI/L1/z)/z/z;
    2 KB (188 words) - 07:03, 1 December 2018
  • {1\!-\!x^2}~\), where \(J_0\) is [[Bessel function]] and \(L_1\approx 2.4\) is its first zero. {1\!-\!x^2}\)
    15 KB (2,303 words) - 18:47, 30 July 2019
  • ...ga}(p)=2\int_0^\infty \frac{J_0(L_1 x)^2}{(1-x^2)^2} \, \exp(\mathrm i p x^2)\, x\, \mathrm dx\) where \(L_1\!=\)[[BesselJZero]][0,1]\(\approx\! 2.4\) is the first zero of the Bessel function; \(J_0(L_1)=0\).
    5 KB (750 words) - 10:00, 20 July 2020

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)