Difference between revisions of "File:ShokotaniaT.png"
Jump to navigation
Jump to search
(Importing image file) |
(add refs; pre) |
||
| (4 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
| + | {{oq|ShokotaniaT.png|Original file (1,669 × 955 pixels, file size: 119 KB, MIME type: image/png)}} |
||
| − | Importing image file |
||
| + | |||
| + | [[Explicit plot]]s of the [[Shoko function]] (thick curve) and the [[Tania function]] (thin curve). |
||
| + | |||
| + | This picture reproduces Fig.5.1 from page 46 of book «[[Superfunctions]]» |
||
| + | <ref> |
||
| + | https://www.amazon.co.jp/-/en/Dmitrii-Kouznetsov/dp/6202672862 <br> |
||
| + | https://www.morebooks.de/shop-ui/shop/product/978-620-2-67286-3<br> |
||
| + | https://mizugadro.mydns.jp/BOOK/468.pdf |
||
| + | D.Kouznetov. Superfunctions. [[Lambert Academic Publishing]], 2020. |
||
| + | </ref>, 2020. |
||
| + | |||
| + | The same picture appears also in the Russian version «[[Суперфункции]]» |
||
| + | <ref> |
||
| + | https://mizugadro.mydns.jp/BOOK/202.pdf |
||
| + | Дмитрий Кузнецов. Суперфункции. [[Lambert Academic Publishing]], 2014. |
||
| + | </ref>, 2014; Fig.5.1, 47. |
||
| + | |||
| + | ==C++ generator of curves== |
||
| + | // files [[doya.cin]] and [[ado.cin]] should be loaded in order to compile the [[C++]] code below. |
||
| + | <pre> |
||
| + | #include<math.h> |
||
| + | #include<stdio.h> |
||
| + | #include<stdlib.h> |
||
| + | #define DB double |
||
| + | #define DO(x,y) for(x=0;x<y;x++) |
||
| + | using namespace std; |
||
| + | #include <complex> |
||
| + | typedef complex<double> z_type; |
||
| + | #define Re(x) x.real() |
||
| + | #define Im(x) x.imag() |
||
| + | #define I z_type(0.,1.) |
||
| + | #include "ado.cin" |
||
| + | #include "doya.cin" |
||
| + | |||
| + | DB Shoko(DB x) { return log(1.+exp(x)*(M_E-1.)); } |
||
| + | |||
| + | main(){ int m,n; double x,y; FILE *o; |
||
| + | o=fopen("ShokoTania.eps","w"); ado(o,802,460); |
||
| + | fprintf(o,"401 1 translate 100 100 scale\n"); |
||
| + | #define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y); |
||
| + | #define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y); |
||
| + | for(m=-4;m<5;m++) {M(m,0)L(m,4)} |
||
| + | for(m=0;m<5;m++) {M(-4,m)L(4,m)} |
||
| + | fprintf(o,"2 setlinecap .01 W S\n"); |
||
| + | for(m=0;m<81;m++) {x=-4.+.1*m; y=Shoko(x); if(m==0) M(x,y) else L(x,y);} |
||
| + | fprintf(o,"1 setlinecap 1 setlinejoin .04 W 0 0.6 0 RGB S\n"); |
||
| + | for(m=0;m<81;m++) {x=-4.+.1*m; y=Re(Tania(x)); if(m==0) M(x,y) else L(x,y);} |
||
| + | fprintf(o,"1 setlinecap 1 setlinejoin .014 W 0.4 0 .4 RGB S\n"); |
||
| + | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
| + | system("epstopdf ShokoTania.eps"); |
||
| + | system( "open ShokoTania.pdf"); |
||
| + | getchar(); system("killall Preview");//for mac |
||
| + | } |
||
| + | </pre> |
||
| + | |||
| + | ==Latex generator of labels== |
||
| + | % file [[ShokoTania.pdf]] should be generated with the code above in order to compile the [[Latex]] document below. |
||
| + | % <poem><nomathjax><nowiki><br> |
||
| + | <pre> |
||
| + | \documentclass[12pt]{article} %<br> |
||
| + | \usepackage{geometry} %<br> |
||
| + | \usepackage{graphics} %<br> |
||
| + | \usepackage{rotating} %<br> |
||
| + | \paperwidth 804pt %<br> |
||
| + | \paperheight 460pt %<br> |
||
| + | \topmargin -111pt %<br> |
||
| + | \oddsidemargin -73pt %<br> |
||
| + | \parindent 0pt %<br> |
||
| + | \pagestyle{empty} %<br> |
||
| + | \newcommand \sx {\scalebox} %<br> |
||
| + | \newcommand \rot {\begin{rotate}} %<br> |
||
| + | \newcommand \ero {\end{rotate}} %<br> |
||
| + | \begin{document} %<br> |
||
| + | \begin{picture}(802,462) %<br> |
||
| + | \put(0,0){\includegraphics{ShokoTania}} %<br> |
||
| + | \put(380,440){\sx{3.2}{$y$}} %<br> |
||
| + | \put(380,392){\sx{3.2}{$4$}} %<br> |
||
| + | \put(380,292){\sx{3.2}{$3$}} %<br> |
||
| + | \put(380,192){\sx{3.2}{$2$}} %<br> |
||
| + | \put(380, 92){\sx{3.2}{$1$}} %<br> |
||
| + | \put( 75, 4){\sx{3.2}{$-\!3$}} %<br> |
||
| + | \put(175, 4){\sx{3.2}{$-\!2$}} %<br> |
||
| + | \put(275, 4){\sx{3.2}{$-\!1$}} %<br> |
||
| + | \put(394, 4){\sx{3.2}{$0$}} %<br> |
||
| + | \put(494, 4){\sx{3.2}{$1$}} %<br> |
||
| + | \put(594, 4){\sx{3.2}{$2$}} %<br> |
||
| + | \put(694, 4){\sx{3.2}{$3$}} %<br> |
||
| + | \put(784, 4){\sx{3.2}{$x$}} %<br> |
||
| + | \put(442,140){\sx{3.2}{\rot{41} $y\!=\!\mathrm{Shoko}(x)$\ero}} %<br> |
||
| + | \put(468,102){\sx{3.2}{\rot{32} $y\!=\!\mathrm{Tania}(x)$\ero}} %<br> |
||
| + | \end{picture} %<br> |
||
| + | \end{document} %<br> |
||
| + | </pre> |
||
| + | % Copyleft 2012 by Dmitrii Kouznetsov |
||
| + | |||
| + | ==References== |
||
| + | {{ref}} |
||
| + | |||
| + | {{fer}} |
||
| + | ==Keywords== |
||
| + | «[[]]», |
||
| + | «[[Shoko function]]», |
||
| + | «[[Tania function]]», |
||
| + | «[[Трехстишия]]», |
||
| + | |||
| + | [[Category:Book]] |
||
| + | [[Category:BookPlot]] |
||
| + | [[Category:Shoka function]] |
||
| + | [[Category:Tania function]] |
||
| + | [[Category:Lased science]] |
||
| + | [[Category:Explicit plot]] |
||
| + | [[Category:Superfunction]] |
||
| + | [[Category:C++]] |
||
| + | [[Category:Latex]] |
||
Latest revision as of 11:44, 16 October 2025
Explicit plots of the Shoko function (thick curve) and the Tania function (thin curve).
This picture reproduces Fig.5.1 from page 46 of book «Superfunctions» [1], 2020.
The same picture appears also in the Russian version «Суперфункции» [2], 2014; Fig.5.1, 47.
C++ generator of curves
// files doya.cin and ado.cin should be loaded in order to compile the C++ code below.
#include<math.h>
#include<stdio.h>
#include<stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
using namespace std;
#include <complex>
typedef complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "ado.cin"
#include "doya.cin"
DB Shoko(DB x) { return log(1.+exp(x)*(M_E-1.)); }
main(){ int m,n; double x,y; FILE *o;
o=fopen("ShokoTania.eps","w"); ado(o,802,460);
fprintf(o,"401 1 translate 100 100 scale\n");
#define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y);
for(m=-4;m<5;m++) {M(m,0)L(m,4)}
for(m=0;m<5;m++) {M(-4,m)L(4,m)}
fprintf(o,"2 setlinecap .01 W S\n");
for(m=0;m<81;m++) {x=-4.+.1*m; y=Shoko(x); if(m==0) M(x,y) else L(x,y);}
fprintf(o,"1 setlinecap 1 setlinejoin .04 W 0 0.6 0 RGB S\n");
for(m=0;m<81;m++) {x=-4.+.1*m; y=Re(Tania(x)); if(m==0) M(x,y) else L(x,y);}
fprintf(o,"1 setlinecap 1 setlinejoin .014 W 0.4 0 .4 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf ShokoTania.eps");
system( "open ShokoTania.pdf");
getchar(); system("killall Preview");//for mac
}
Latex generator of labels
% file ShokoTania.pdf should be generated with the code above in order to compile the Latex document below.
% <poem><nomathjax><nowiki>
\documentclass[12pt]{article} %<br>
\usepackage{geometry} %<br>
\usepackage{graphics} %<br>
\usepackage{rotating} %<br>
\paperwidth 804pt %<br>
\paperheight 460pt %<br>
\topmargin -111pt %<br>
\oddsidemargin -73pt %<br>
\parindent 0pt %<br>
\pagestyle{empty} %<br>
\newcommand \sx {\scalebox} %<br>
\newcommand \rot {\begin{rotate}} %<br>
\newcommand \ero {\end{rotate}} %<br>
\begin{document} %<br>
\begin{picture}(802,462) %<br>
\put(0,0){\includegraphics{ShokoTania}} %<br>
\put(380,440){\sx{3.2}{$y$}} %<br>
\put(380,392){\sx{3.2}{$4$}} %<br>
\put(380,292){\sx{3.2}{$3$}} %<br>
\put(380,192){\sx{3.2}{$2$}} %<br>
\put(380, 92){\sx{3.2}{$1$}} %<br>
\put( 75, 4){\sx{3.2}{$-\!3$}} %<br>
\put(175, 4){\sx{3.2}{$-\!2$}} %<br>
\put(275, 4){\sx{3.2}{$-\!1$}} %<br>
\put(394, 4){\sx{3.2}{$0$}} %<br>
\put(494, 4){\sx{3.2}{$1$}} %<br>
\put(594, 4){\sx{3.2}{$2$}} %<br>
\put(694, 4){\sx{3.2}{$3$}} %<br>
\put(784, 4){\sx{3.2}{$x$}} %<br>
\put(442,140){\sx{3.2}{\rot{41} $y\!=\!\mathrm{Shoko}(x)$\ero}} %<br>
\put(468,102){\sx{3.2}{\rot{32} $y\!=\!\mathrm{Tania}(x)$\ero}} %<br>
\end{picture} %<br>
\end{document} %<br>
% Copyleft 2012 by Dmitrii Kouznetsov
References
- ↑
https://www.amazon.co.jp/-/en/Dmitrii-Kouznetsov/dp/6202672862
https://www.morebooks.de/shop-ui/shop/product/978-620-2-67286-3
https://mizugadro.mydns.jp/BOOK/468.pdf D.Kouznetov. Superfunctions. Lambert Academic Publishing, 2020. - ↑ https://mizugadro.mydns.jp/BOOK/202.pdf Дмитрий Кузнецов. Суперфункции. Lambert Academic Publishing, 2014.
Keywords
«[[]]», «Shoko function», «Tania function», «Трехстишия»,
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 17:50, 20 June 2013 | 1,669 × 955 (119 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following 3 pages use this file: