Difference between revisions of "File:TraMapT.jpg"
m (→Keywords: «Суперфункции») |
|||
| (One intermediate revision by the same user not shown) | |||
| Line 1: | Line 1: | ||
| + | {{oq|TraMapT.jpg|Original file (2,576 × 2,559 pixels, file size: 1.75 MB, MIME type: image/jpeg)|360}} |
||
| ⚫ | |||
| + | Fig.20.2 from page 269 of book «[[Superfunctions]]»<ref> |
||
| ⚫ | |||
| + | https://mizugadro.mydns.jp/BOOK/468.pdf |
||
| + | D.Kouznetsov. [[Superfunctions]]. [[Lambert Academic Publishing]], 2020. |
||
| + | </ref>, 2020. |
||
| + | The image is used also as Рис.20.2 at page 278 of the Russian version «[[Суперфункции]]» |
||
| ⚫ | |||
| + | <ref> |
||
| + | https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0 <br> |
||
| + | https://mizugadro.mydns.jp/BOOK/202.pdf |
||
| + | Д.Кузнецов. [[Суперфункции]]. [[Lambert Academic Publishing]], 2014 |
||
| + | </ref>, 2014. |
||
| + | The figure shows the |
||
| ⚫ | |||
| + | \(\mathrm{tra}(z)=z+\mathrm e^z\): |
||
| + | |||
| + | \( |
||
| ⚫ | |||
| + | |||
| + | The [[Trappmann function]] is interesting as a [[transfer function]], |
||
| + | because it has no [[fixed point]].<br> |
||
| + | The [[superfunction]] ([[SuTra]]) for this transfer function was believed to be difficult to construct if at al.<br> |
||
| + | However, it happened to be not a case; the construction is published at [[Applied Mathematical Sciences]] <ref> |
||
| + | http://www.m-hikari.com/ams/ams-2013/ams-129-132-2013/kouznetsovAMS129-132-2013.pdf D.Kouznetsov. Entire Function with Logarithmic Asymptotic. [[Applied Mathematical Sciences]], Vol. 7, 2013, no. 131, 6527 - 6541 |
||
| + | </ref> in 2013. <br> |
||
| + | The construction of |
||
| + | the [[superfunction]] [[SuTra]], |
||
| + | the [[abelfunction]] [[AuTra]], |
||
| + | iterates of the [[Trappmann function]] and their properties are |
||
| + | described also in the books cited. |
||
| + | |||
| ⚫ | |||
| + | /* Files [[ado.cin]] and [[conto.cin]] should be loaded in order to compile the code below */ |
||
| + | <pre> |
||
#include <math.h> |
#include <math.h> |
||
#include <stdio.h> |
#include <stdio.h> |
||
| Line 63: | Line 93: | ||
getchar(); system("killall Preview"); // For macintosh |
getchar(); system("killall Preview"); // For macintosh |
||
} |
} |
||
| + | </pre> |
||
==[[Latex]] generator of labels== |
==[[Latex]] generator of labels== |
||
| + | %<pre> |
||
| − | |||
| − | %<poem><nomathjax><nowiki> |
||
\documentclass[12pt]{article} |
\documentclass[12pt]{article} |
||
\paperheight 1228px |
\paperheight 1228px |
||
| Line 142: | Line 172: | ||
\end{picture}} |
\end{picture}} |
||
\end{document} |
\end{document} |
||
| + | %</pre> |
||
| − | </nowiki></momathjax></poem> |
||
| + | ==References== |
||
| + | {{ref}} |
||
| + | {{fer}} |
||
| + | ==Keywords== |
||
| ⚫ | |||
| ⚫ | |||
| − | [[ |
+ | «[[Elementary function]]», |
| + | «[[Superfunctions]]», |
||
| ⚫ | |||
| − | [[ |
+ | «[[Transfer function]]», |
| + | «[[Trappmann function]]», |
||
| + | |||
| + | «[[Суперфункции]]», |
||
| + | |||
| + | [[Category:Book]] |
||
| + | [[Category:BookMap]] |
||
[[Category:C++]] |
[[Category:C++]] |
||
| + | [[Category:Complex map]] |
||
| + | [[Category:Elementary function]] |
||
[[Category:Latex]] |
[[Category:Latex]] |
||
| + | [[Category:Superfunctions]] |
||
| + | [[Category:Transfer function]] |
||
| ⚫ | |||
| + | [[Category:Transfer function]] |
||
Latest revision as of 17:53, 7 January 2026
Fig.20.2 from page 269 of book «Superfunctions»[1], 2020.
The image is used also as Рис.20.2 at page 278 of the Russian version «Суперфункции» [2], 2014.
The figure shows the complex map of the Trappmann function \(\mathrm{tra}(z)=z+\mathrm e^z\):
\( u\!+\!\mathrm i v\!=\!\mathrm{tra}(x\!+\!\mathrm i y) \)
The Trappmann function is interesting as a transfer function,
because it has no fixed point.
The superfunction (SuTra) for this transfer function was believed to be difficult to construct if at al.
However, it happened to be not a case; the construction is published at Applied Mathematical Sciences [3] in 2013.
The construction of
the superfunction SuTra,
the abelfunction AuTra,
iterates of the Trappmann function and their properties are
described also in the books cited.
C++ generator of curves
/* Files ado.cin and conto.cin should be loaded in order to compile the code below */
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
using namespace std;
#include<complex>
typedef complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
//#include "fsexp.cin"
//#include "fslog.cin"
//z_type zex(z_type z){ return z*exp(z);}
z_type tra(z_type z){ return z+exp(z);}
main(){ int j,k,m,n; DB x1,x,y, p,q, t; z_type z,c,d, cu,cd;
int M=601,M1=M+1;
int N=601,N1=N+1;
DB X[M1],Y[N1];
DB *g, *f, *w; // w is working array.
g=(DB *)malloc((size_t)((M1*N1)*sizeof(DB)));
f=(DB *)malloc((size_t)((M1*N1)*sizeof(DB)));
w=(DB *)malloc((size_t)((M1*N1)*sizeof(DB)));
char v[M1*N1]; // v is working array
FILE *o;o=fopen("TraMap.eps","w"); ado(o,1202,1202);
fprintf(o,"601 601 translate\n 100 100 scale\n");
fprintf(o,"1 setlinejoin 2 setlinecap\n");
DO(m,M1) X[m]=-6.+.02*(m-.5);
DO(n,N1) Y[n]=-6.+.02*(n-.5);
//for(n=0;n<N1;n++) { Y[n]=0.6*sinh((3./200.)*(n-200.5)); printf("%3d %9.6f\n",n,Y[n]); }
for(m=-6;m<7;m++) {M(m,-6)L(m,6)}
for(n=-6;n<7;n++) {M( -6,n)L(6,n)} fprintf(o,".006 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){ g[m*N1+n]=999;
f[m*N1+n]=999;}
DO(m,M1){x=X[m]; if(m/10*10==m) printf("x=%6.3f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y); c=tra(z); p=Re(c); q=Im(c);
// if(p>-19 && p<19 && fabs(q)>1.e-12 && fabs(p)>1.e-12)
g[m*N1+n]=p;
// if(p>-19 && p<19 && fabs(q)>1.e-12 && fabs(p)>1.e-12)
f[m*N1+n]=q;
}}
fprintf(o,"1 setlinejoin 1 setlinecap\n"); p=24.;q=.2;
for(m=-8;m<8;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q,q);fprintf(o,".007 W 0 .6 0 RGB S\n");
for(m=0;m<8;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q,q);fprintf(o,".007 W .9 0 0 RGB S\n");
for(m=0;m<8;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q,q);fprintf(o,".007 W 0 0 .9 RGB S\n");
for(m= 1;m<17;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p);fprintf(o,".02 W .8 0 0 RGB S\n");
for(m= 1;m<17;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p);fprintf(o,".02 W 0 0 .8 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".02 W .5 0 .5 RGB S\n");
for(m=-16;m<17;m++)conto(o,g,w,v,X,Y,M,N,(0.+m),-p,p);fprintf(o,".02 W 0 0 0 RGB S\n");
fprintf(o,"showpage\n"); fprintf(o,"%c%cTrailer\n",'%','%');
fclose(o); free(f); free(g); free(w);
system("epstopdf TraMap.eps");
system( "open TraMap.pdf"); //for macintosh
getchar(); system("killall Preview"); // For macintosh
}
Latex generator of labels
%\documentclass[12pt]{article}
\paperheight 1228px
\paperwidth 1236px
\textwidth 1394px
\textheight 1300px
\topmargin -104px
\oddsidemargin -78px
\usepackage{graphics}
\usepackage{rotating}
\newcommand \sx {\scalebox}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\newcommand \ing {\includegraphics}
\newcommand \rmi {\mathrm{i}}
\begin{document}
\newcommand \zoomax {
\put(18,1206){\sx{3.3}{$y$}}
\put(18,1113){\sx{3}{$5$}}
\put(18,1013){\sx{3}{$4$}}
\put(18, 913){\sx{3}{$3$}}
\put(18, 813){\sx{3}{$2$}}
\put(18, 713){\sx{3}{$1$}}
\put(18, 613){\sx{3}{$0$}}
\put(-6, 513){\sx{3}{$-1$}}
\put(-6, 413){\sx{3}{$-2$}}
\put(-6, 313){\sx{3}{$-3$}}
\put(-6, 213){\sx{3}{$-4$}}
\put(-6, 113){\sx{3}{$-5$}}
\put(-6, 013){\sx{3}{$-6$}}
\put(014, -5){\sx{3}{$-6$}}
\put(114, -5){\sx{3}{$-5$}}
\put(214, -5){\sx{3}{$-4$}}
\put(314, -5){\sx{3}{$-3$}}
\put(414, -5){\sx{3}{$-2$}}
\put(514, -5){\sx{3}{$-1$}}
\put(635, -5){\sx{3}{$0$}}
\put(735, -5){\sx{3}{$1$}}
\put(835, -5){\sx{3}{$2$}}
\put(935, -5){\sx{3}{$3$}}
\put(1035, -5){\sx{3}{$4$}}
\put(1135, -5){\sx{3}{$5$}}
\put(1227,-4){\sx{3}{$x$}}
}
\parindent 0pt
\sx{1}{\begin{picture}(1252,1220)
%\put(40,20){\ing{b271tMap3}}
%\put(40,20){\ing{ExpMap}}
%\put(40,20){\ing{suzexD1map}}
\put(40,20){\ing{tramap}}
\zoomax
\put(90,1116){\sx{4}{$v\!=\!5$}}
\put(90,1015){\sx{4}{$v\!=\!4$}}
\put(90,914){\sx{4}{$v\!=\!3$}}
\put(90,813){\sx{4}{$v\!=\!2$}}
\put(90,712){\sx{4}{$v\!=\!1$}}
\put(90,611){\sx{4}{$v\!=\!0$}}
\put(90,510){\sx{4}{$v\!=\!-1$}}
\put(90,409){\sx{4}{$v\!=\!-2$}}
\put(90,308){\sx{4}{$v\!=\!-3$}}
\put(90,207){\sx{4}{$v\!=\!-4$}}
\put(90,106){\sx{4}{$v\!=\!-5$}}
\put(257,555){\sx{4}{\rot{90}$u\!=\!-4$\ero}}
\put(355,555){\sx{4}{\rot{90}$u\!=\!-3$\ero}}
\put(447,555){\sx{4}{\rot{90}$u\!=\!-2$\ero}}
\put(534,555){\sx{4}{\rot{90}$u\!=\!-1$\ero}}
\put(600,572){\sx{4}{\rot{90}$u\!=\!0$\ero}}
\put(656,574){\sx{4}{\rot{90}$u\!=\!1$\ero}}
\put(990,678){\sx{4}{\rot{-15}$v\!=\!16$\ero}}
\put(990,550){\sx{4}{\rot{9}$v\!=\!-16$\ero}}
\put(998,507){\sx{4}{\rot{-11}$u\!=\!16$\ero}}
\put(996,380){\sx{4}{\rot{13}$u\!=\!-16$\ero}}
\end{picture}}
\end{document}
%
References
- ↑ https://mizugadro.mydns.jp/BOOK/468.pdf D.Kouznetsov. Superfunctions. Lambert Academic Publishing, 2020.
- ↑
https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0
https://mizugadro.mydns.jp/BOOK/202.pdf Д.Кузнецов. Суперфункции. Lambert Academic Publishing, 2014 - ↑ http://www.m-hikari.com/ams/ams-2013/ams-129-132-2013/kouznetsovAMS129-132-2013.pdf D.Kouznetsov. Entire Function with Logarithmic Asymptotic. Applied Mathematical Sciences, Vol. 7, 2013, no. 131, 6527 - 6541
Keywords
«Complex map», «Elementary function», «Superfunctions», «Transfer function», «Trappmann function»,
«Суперфункции»,
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 17:50, 20 June 2013 | 2,576 × 2,559 (1.75 MB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following page uses this file: