Difference between revisions of "File:KellerPlotT.png"
(Importing image file) |
|||
| Line 1: | Line 1: | ||
| + | Explicit plot of various iterations $t$ the [[Keller function]] |
||
| − | Importing image file |
||
| + | |||
| + | : $ y=\mathrm{Keller}^t(x)=\mathrm{Shoka}\Big( t + \mathrm{ArcShoka}(x)\Big)$ |
||
| + | |||
| + | To plot this graphic, the iterations of the [[Keller function]] are implemented through the [[Shoka function]] and the [[ArcShoka]] function. |
||
| + | |||
| + | ==C++ generator of curves]]== |
||
| + | // File [[ado.cin]] shold be loaded to the working directory in order to compile the [[C++]] code below. |
||
| + | |||
| + | #include <math.h> |
||
| + | #include <stdio.h> |
||
| + | #include <stdlib.h> |
||
| + | #define DB double |
||
| + | #define DO(x,y) for(x=0;x<y;x++) |
||
| + | using namespace std; |
||
| + | #include <complex> |
||
| + | typedef complex<double> z_type; |
||
| + | #define Re(x) x.real() |
||
| + | #define Im(x) x.imag() |
||
| + | #define I z_type(0.,1.) |
||
| + | |||
| + | #include"ado.cin" |
||
| + | |||
| + | z_type Shoka(z_type z) { return z + log(exp(-z)+(M_E-1.)); } |
||
| + | z_type ArcShoka(z_type z){ return z + log((1.-exp(-z))/(M_E-1.)) ;} |
||
| + | |||
| + | #define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y); |
||
| + | #define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y); |
||
| + | main(){ int j,k,m,n; DB x,y, a; |
||
| + | FILE *o;o=fopen("KellerPlot.eps","w");ado(o,408,412); |
||
| + | fprintf(o,"4 4 translate\n 100 100 scale 2 setlinecap 1 setlinejoin\n"); |
||
| + | for(m=0;m<5;m++){ M(m,0)L(m,4)} |
||
| + | for(n=0;n<5;n++){ M(0,n)L(4,n)} |
||
| + | M(0,0)L(4,4) |
||
| + | fprintf(o,".01 W 0 0 0 RGB S\n"); |
||
| + | DO(n,134){x=.005+.01*n;y=Re(Shoka(3.+ArcShoka(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W 0 0 .5 RGB S\n"); |
||
| + | DO(n,216){x=.005+.01*n;y=Re(Shoka(2.+ArcShoka(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W 0 0 .5 RGB S\n"); |
||
| + | DO(n,154){x=.005+.02*n;y=Re(Shoka(1.+ArcShoka(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W 0 0 .5 RGB S\n"); |
||
| + | DO(n,101){x=.005+.04*n;y=Re(Shoka(-1.+ArcShoka(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W .5 0 0 RGB S\n"); |
||
| + | DO(n,101){x=.005+.04*n;y=Re(Shoka(-2.+ArcShoka(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W .5 0 0 RGB S\n"); |
||
| + | DO(n,101){x=.005+.04*n;y=Re(Shoka(-3.+ArcShoka(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W .5 0 0 RGB S\n"); |
||
| + | fprintf(o,"showpage\n%cTrailer",'%'); fclose(o); |
||
| + | system("epstopdf KellerPlot.eps"); |
||
| + | system( "open KellerPlot.pdf"); //these 2 commands may be specific for macintosh |
||
| + | getchar(); system("killall Preview");// if run at another operational sysetm, may need to modify |
||
| + | } |
||
| + | |||
| + | |||
| + | ==Latex generator of labels== |
||
| + | |||
| + | % File [[KellerPlot.pdf]] should be generated with the code above in order to compile the [[Latex]] document below. |
||
| + | |||
| + | %<nowiki> |
||
| + | |||
| + | \documentclass[12pt]{article} %<br> |
||
| + | \usepackage{geometry} %<br> |
||
| + | \usepackage{graphicx} %<br> |
||
| + | \usepackage{rotating} %<br> |
||
| + | \paperwidth 419pt %<br> |
||
| + | \paperheight 426pt %<br> |
||
| + | \topmargin -103pt %<br> |
||
| + | \oddsidemargin -83pt %<br> |
||
| + | \textwidth 1200pt %<br> |
||
| + | \textheight 600pt %<br> |
||
| + | \pagestyle {empty} %<br> |
||
| + | \newcommand \sx {\scalebox} %<br> |
||
| + | \newcommand \rot {\begin{rotate}} %<br> |
||
| + | \newcommand \ero {\end{rotate}} %<br> |
||
| + | \newcommand \ing {\includegraphics} %<br> |
||
| + | \begin{document} %<br> |
||
| + | \sx{1}{ \begin{picture}(810,410) %<br> |
||
| + | \put(1,9){\ing{KellerPlot}} % <br> |
||
| + | \put(-12,401){\sx{2.8}{$y$}} % <br> |
||
| + | \put(-12,303){\sx{2.8}{$3$}} % <br> |
||
| + | \put(-12,203){\sx{2.8}{$2$}} % <br> |
||
| + | \put(-12,103){\sx{2.8}{$1$}} % <br> |
||
| + | \put(0,-9){\sx{2.5}{$0$}} % <br> |
||
| + | \put(100,-9){\sx{2.5}{$1$}} % <br> |
||
| + | \put(200,-9){\sx{2.5}{$2$}} % <br> |
||
| + | \put(300,-9){\sx{2.5}{$3$}} % <br> |
||
| + | \put(392,-7){\sx{2.6}{$x$}} % <br> |
||
| + | %\put(560,214){\rot{37}\sx{4}{$y=\mathrm{Tania}(x)$}\ero} % <br> |
||
| + | \put( 88,354){\rot{53}\sx{2.8}{$t\!=\!3$}\ero} %<br> |
||
| + | \put(160,354){\rot{50}\sx{2.8}{$t\!=\!2$}\ero} %<br> |
||
| + | \put(246,354){\rot{48}\sx{2.8}{$t\!=\!1$}\ero} %<br> |
||
| + | \put(336,350){\rot{45}\sx{2.8}{$t\!=\!0$}\ero} %<br> |
||
| + | \put(340,218){\rot{44}\sx{2.8}{$t\!=\!-1$}\ero} %<br> |
||
| + | \put(344,136){\rot{41}\sx{2.7}{$t\!=\!-2$}\ero} %<br> |
||
| + | \put(338, 68){\rot{34}\sx{2.7}{$t\!=\!-3$}\ero} %<br> |
||
| + | \end{picture} %<br> |
||
| + | } %<br> |
||
| + | \end{document} |
||
| + | %</nowiki> |
||
| + | |||
| + | |||
| + | ==Copyleft status== |
||
| + | Copyleft 2012 by Dmitrii Kouznetsov. |
||
| + | The image and the generators above may be used for free; attribute the source. |
||
| + | ==Refernces== |
||
| + | <references/> |
||
| + | |||
| + | [[Category:Keller function]] |
||
| + | [[Category:Transfer function]] |
||
| + | [[Category:Shoka function]] |
||
| + | [[Category:ArcShoka]] |
||
| + | [[Category:Laser science]] |
||
| + | [[Category:Explicit plot]] |
||
| + | [[Category:C++]] |
||
| + | [[Category:Latex]] |
||
Revision as of 09:43, 21 June 2013
Explicit plot of various iterations $t$ the Keller function
- $ y=\mathrm{Keller}^t(x)=\mathrm{Shoka}\Big( t + \mathrm{ArcShoka}(x)\Big)$
To plot this graphic, the iterations of the Keller function are implemented through the Shoka function and the ArcShoka function.
C++ generator of curves]]
// File ado.cin shold be loaded to the working directory in order to compile the C++ code below.
#include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) using namespace std; #include <complex> typedef complex<double> z_type; #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.)
#include"ado.cin"
z_type Shoka(z_type z) { return z + log(exp(-z)+(M_E-1.)); }
z_type ArcShoka(z_type z){ return z + log((1.-exp(-z))/(M_E-1.)) ;}
#define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y);
main(){ int j,k,m,n; DB x,y, a;
FILE *o;o=fopen("KellerPlot.eps","w");ado(o,408,412);
fprintf(o,"4 4 translate\n 100 100 scale 2 setlinecap 1 setlinejoin\n");
for(m=0;m<5;m++){ M(m,0)L(m,4)}
for(n=0;n<5;n++){ M(0,n)L(4,n)}
M(0,0)L(4,4)
fprintf(o,".01 W 0 0 0 RGB S\n");
DO(n,134){x=.005+.01*n;y=Re(Shoka(3.+ArcShoka(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W 0 0 .5 RGB S\n");
DO(n,216){x=.005+.01*n;y=Re(Shoka(2.+ArcShoka(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W 0 0 .5 RGB S\n");
DO(n,154){x=.005+.02*n;y=Re(Shoka(1.+ArcShoka(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W 0 0 .5 RGB S\n");
DO(n,101){x=.005+.04*n;y=Re(Shoka(-1.+ArcShoka(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W .5 0 0 RGB S\n");
DO(n,101){x=.005+.04*n;y=Re(Shoka(-2.+ArcShoka(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W .5 0 0 RGB S\n");
DO(n,101){x=.005+.04*n;y=Re(Shoka(-3.+ArcShoka(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W .5 0 0 RGB S\n");
fprintf(o,"showpage\n%cTrailer",'%'); fclose(o);
system("epstopdf KellerPlot.eps");
system( "open KellerPlot.pdf"); //these 2 commands may be specific for macintosh
getchar(); system("killall Preview");// if run at another operational sysetm, may need to modify
}
Latex generator of labels
% File KellerPlot.pdf should be generated with the code above in order to compile the Latex document below.
% \documentclass[12pt]{article} %<br> \usepackage{geometry} %<br> \usepackage{graphicx} %<br> \usepackage{rotating} %<br> \paperwidth 419pt %<br> \paperheight 426pt %<br> \topmargin -103pt %<br> \oddsidemargin -83pt %<br> \textwidth 1200pt %<br> \textheight 600pt %<br> \pagestyle {empty} %<br> \newcommand \sx {\scalebox} %<br> \newcommand \rot {\begin{rotate}} %<br> \newcommand \ero {\end{rotate}} %<br> \newcommand \ing {\includegraphics} %<br> \begin{document} %<br> \sx{1}{ \begin{picture}(810,410) %<br> \put(1,9){\ing{KellerPlot}} % <br> \put(-12,401){\sx{2.8}{$y$}} % <br> \put(-12,303){\sx{2.8}{$3$}} % <br> \put(-12,203){\sx{2.8}{$2$}} % <br> \put(-12,103){\sx{2.8}{$1$}} % <br> \put(0,-9){\sx{2.5}{$0$}} % <br> \put(100,-9){\sx{2.5}{$1$}} % <br> \put(200,-9){\sx{2.5}{$2$}} % <br> \put(300,-9){\sx{2.5}{$3$}} % <br> \put(392,-7){\sx{2.6}{$x$}} % <br> %\put(560,214){\rot{37}\sx{4}{$y=\mathrm{Tania}(x)$}\ero} % <br> \put( 88,354){\rot{53}\sx{2.8}{$t\!=\!3$}\ero} %<br> \put(160,354){\rot{50}\sx{2.8}{$t\!=\!2$}\ero} %<br> \put(246,354){\rot{48}\sx{2.8}{$t\!=\!1$}\ero} %<br> \put(336,350){\rot{45}\sx{2.8}{$t\!=\!0$}\ero} %<br> \put(340,218){\rot{44}\sx{2.8}{$t\!=\!-1$}\ero} %<br> \put(344,136){\rot{41}\sx{2.7}{$t\!=\!-2$}\ero} %<br> \put(338, 68){\rot{34}\sx{2.7}{$t\!=\!-3$}\ero} %<br> \end{picture} %<br> } %<br> \end{document} %
Copyleft status
Copyleft 2012 by Dmitrii Kouznetsov. The image and the generators above may be used for free; attribute the source.
Refernces
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 17:50, 20 June 2013 | 870 × 885 (118 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following page uses this file: