Difference between revisions of "File:Analuxp01t400.jpg"
m (→e: Linear approximation by Gusmad: misprint) |
|||
| (2 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
| + | {{oq|Analuxp01u400.jpg|Original file (2,083 × 3,011 pixels, file size: 1.67 MB, MIME type: image/jpeg)}} |
||
| − | Comparison of various fits of the [[natural titration]] with the [[complex map]s |
||
| + | Fig.14.4 from page 181 of book «[[Superfunctions]]»<ref> |
||
| − | Lines of constant [[logamplitude]] $u$ and phase $v$ are shown in the complex plane: |
||
| + | https://www.amazon.co.jp/-/en/Dmitrii-Kouznetsov/dp/6202672862 <br> |
||
| + | https://www.morebooks.de/shop-ui/shop/product/978-620-2-67286-3 <br> |
||
| + | https://mizugadro.mydns.jp/BOOK/458.pdf |
||
| + | Dmitrii Kouznetsov. [[Superfunctions]]. [[Lambert Academic Piblishing]], 2020. |
||
| + | Page 181, Fig.14.4. |
||
| + | </ref>, 2020.<br> |
||
| + | The same maps appear also in Рис.14.4 at page 180 of the Russian version «[[Суперфункции]]»<ref> |
||
| + | https://mizugadro.mydns.jp/BOOK/2020.pdf |
||
| + | Дмитрий Кузнецов. [[Суперфункции]]. [[Lambert Academic Piblishing]], 2014. |
||
| + | Page 180, Fig.14.4. |
||
| + | </ref>, 2014.<br> |
||
| + | Even earlier, these maps are published in [[Mathematic of Computation]] <ref name="analuxp"/>, 2009. |
||
| + | The figure shows the [[Complex map]]s of various approximations \(f\) of [[natural tetration]] |
||
| − | $\exp(u\!+\!\mathrm i v) = f(x\!+\!\mathrm i y)$ |
||
| + | with lines of constant logamplitude and constant phase: |
||
| + | \(\exp(u+\mathrm i v)=f(x\!+\!\mathrm i y)\) |
||
| − | for various approximations described below. |
||
| + | |||
| + | This is historical figure; so, it is preserved "as is". |
||
| + | |||
| + | For the most of [[couplex map]]s in [[TORI]], another representation is used, |
||
| + | the maps of function \(f\) are shown with <br> |
||
| + | lines \( u=\mathrm{constant} \) and<br> |
||
| + | lines \( v=\mathrm{constant} \); |
||
| + | |||
| + | \( u+\mathrm i v=f(x\!+\!\mathrm i y)\) |
||
| + | |||
| + | Namely for the [[natural tetration]], such a transform just displace all the curves for unity. |
||
==Description of curves== |
==Description of curves== |
||
| − | Note that in this figure, $u$ and $v$ are [[logamplitude]] and [[phase]] of the plotted functions; not the real and imaginary parts, as usually. |
||
| − | This corresponds to the displacement of the map for unity to the right, along the real axis. |
||
| − | In this case, it is easier to guess the asymptotic behaviour of the function (last picture, d) from its primitive fit (picture b). |
||
| − | === |
+ | ===e: Linear approximation by Gusmad=== |
| − | This is approximation, |
+ | This is approximation, linear in the range \(-1 < \Re(z) \le 0\) |
| + | suggested in 2006 by M.H.Hooshmand |
||
| − | <ref> |
||
| + | |||
| − | http://www.tandfonline.com/doi/full/10.1080/10652460500422247#.UoSKyhZT_-k |
||
| − | M.H.Hooshmand. ”Ultra power and ultra exponential functions”. Integral Transforms and Special Functions 17 (8), 549-558 (2006) |
+ | <ref>3. M.H.Hooshmand. ”Ultra power and ultra exponential functions”. Integral Transforms and Special Functions 17 (8), 549-558 (2006) |
| − | </ref> |
+ | </ref> |
| + | |||
| + | \(u+\mathrm i v=\mathrm{uxp}(x\!+\!\mathrm i y)\) |
||
| − | + | \(\mathrm{uxp}(z)=\!\left\{\!\! |
|
\begin{array}{ccccc cc} |
\begin{array}{ccccc cc} |
||
\ln\!\big({\rm uxp}(z\!+\!1)\big)~&~{\rm at}~&~ \!&\! \!&\! \Re(z) \!&\! \le \!&\! -1 \\ |
\ln\!\big({\rm uxp}(z\!+\!1)\big)~&~{\rm at}~&~ \!&\! \!&\! \Re(z) \!&\! \le \!&\! -1 \\ |
||
| Line 25: | Line 48: | ||
\exp\!\big({\rm uxp}(z\!-\!1)\big)~&{~\rm at}~&~ 0 \!&\! < \!&\! \Re(z) \!& |
\exp\!\big({\rm uxp}(z\!-\!1)\big)~&{~\rm at}~&~ 0 \!&\! < \!&\! \Re(z) \!& |
||
\end{array} |
\end{array} |
||
| − | \right. |
+ | \right.\) |
| − | === |
+ | ===f: Approximation for moderate values of imaginary part of the argument=== |
| − | + | \(\mathrm {Fit}_{3}(z) = \left\{\!\! |
|
\begin{array}{ccccc cc} |
\begin{array}{ccccc cc} |
||
\ln\!\big({\rm Fit}_{3}(z\!+\!1)\big)~&~{~\rm at~}~&~ \!&\! \!&\! \Re(z) \!&\! \le \!&\! -1 \\ |
\ln\!\big({\rm Fit}_{3}(z\!+\!1)\big)~&~{~\rm at~}~&~ \!&\! \!&\! \Re(z) \!&\! \le \!&\! -1 \\ |
||
| Line 36: | Line 59: | ||
\end{array} |
\end{array} |
||
\right. |
\right. |
||
| + | \) |
||
| − | $ |
||
where |
where |
||
| − | + | \(\displaystyle |
|
\mathrm{fit}_3(z) \!=\! 0.6\!~\mathrm{fit}_{2}(z)+0.4\!~\ln\big( \mathrm{fit}_{2}(z+1)\big) |
\mathrm{fit}_3(z) \!=\! 0.6\!~\mathrm{fit}_{2}(z)+0.4\!~\ln\big( \mathrm{fit}_{2}(z+1)\big) |
||
| + | \) |
||
| − | $ |
||
| − | + | \(\displaystyle |
|
\mathrm{fit}_2(z) \!=\! |
\mathrm{fit}_2(z) \!=\! |
||
\ln(2\!+\!z) |
\ln(2\!+\!z) |
||
| Line 52: | Line 75: | ||
\Big(\!\mathrm e\! -2\! +\! \ln\frac{4}{3} \Big) |
\Big(\!\mathrm e\! -2\! +\! \ln\frac{4}{3} \Big) |
||
- \ln 2 |
- \ln 2 |
||
| − | \right) |
+ | \right)\) |
| − | + | \( s_2(z) = \exp\!\Big(\exp(z-2.51)\Big)-0.6+0.08(z\!+\!1) \) |
|
| − | === |
+ | ===g. Approximation for large values of imaginary part of the argument=== |
| − | In the upper half plane, say, |
+ | In the upper half plane, say, \(y>1/2\), the \(\mathrm{fit}_6\) is shown, |
| − | + | \(u+\mathrm i v =\mathrm{fit}_6(x\!+\!\mathrm i y)\) |
|
| + | |||
| + | where |
||
| + | |||
| + | \(\mathrm{fit}_6(z) = \left\{ |
||
\begin{array} |
\begin{array} |
||
~ |
~ |
||
| Line 66: | Line 93: | ||
\exp\Big(\mathrm{fit}_6(z\!-\!1)\Big)~,~ \Re(z)\ge -8 |
\exp\Big(\mathrm{fit}_6(z\!-\!1)\Big)~,~ \Re(z)\ge -8 |
||
\end{array} |
\end{array} |
||
| − | \right. |
+ | \right.\) |
| + | and |
||
| − | for $\Re(z)>0.5$ and |
||
| − | + | \(u+\mathrm i v =\mathrm{fit}_6(x\!-\!\mathrm i y)^*\) |
|
| − | in the lower half plane, say, |
+ | in the lower half plane, say, \(y<-1/2\). |
| − | The strip of intermediate values |
+ | The strip of intermediate values \(|y|<1/2\) is left empty. |
| − | In formula above, |
+ | In formula above, \(L\approx 0.31813150520476413 + 1.3372357014306895 \,\mathrm i\) is [[fixed point]] of logarithm, \(L=\ln(L)\). |
| − | For [[Natural tetration]], the increment |
+ | For [[Natural tetration]], the increment \(k=L\). |
| − | Parameter |
+ | Parameter \(r\) provides the match of the two asymptotics. It is fundamental mathematical constant; |
| − | + | \(r \approx 1.075820830781 - 0.9466419207254 \, \mathrm i\) . |
|
This precision seems to be sufficient for the applications; however, the improvement of the precision may be subject of the additional research. |
This precision seems to be sufficient for the applications; however, the improvement of the precision may be subject of the additional research. |
||
| − | === |
+ | ===h. Precise approximation.=== |
The precise approximation of the [[natural tetration]], with 14 decimal digits, is described at |
The precise approximation of the [[natural tetration]], with 14 decimal digits, is described at |
||
| − | <ref name="analuxp"> |
+ | <ref name="analuxp"/><ref name="vladi"/>, |
| − | MOC |
||
| − | </ref><ref name="vladi"> |
||
| − | Vladi |
||
| − | </ref>. is this text seen? |
||
| − | is this text seen? |
||
| + | \(u+\mathrm i v=\mathrm{tet}(x\!+\!\mathrm i y)\) |
||
| − | The figure shown is almost the same, as in figure 1 in the first description of the real-holomorphic tetration to base e |
||
| + | |||
| + | However, looking at the picture. it is not possible to guess, which algorithm is used, the direct implementation of the Cauchi integral |
||
<ref name="analuxp"> |
<ref name="analuxp"> |
||
| − | http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html <br> |
+ | http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html <br> |
Preprint: http://www.ils.uec.ac.jp/~dima/PAPERS/2009analuxpRepri.pdf |
Preprint: http://www.ils.uec.ac.jp/~dima/PAPERS/2009analuxpRepri.pdf |
||
D.Kouznetsov. Analytic solution of F(z+1)=exp(F(z)) in complex z-plane. Mathematics of Computation, v.78 (2009), 1647-1670. |
D.Kouznetsov. Analytic solution of F(z+1)=exp(F(z)) in complex z-plane. Mathematics of Computation, v.78 (2009), 1647-1670. |
||
| − | </ref> |
+ | </ref> |
| + | or the fast implementation by |
||
| − | However, here, the labels are added to mark the curves. |
||
| + | <ref name="vladi"> |
||
| + | http://mizugadro.mydns.jp/PAPERS/2010vladie.pdf English version <br> |
||
| + | http://mizugadro.mydns.jp/PAPERS/2009vladie.pdf Preprint, English version <br> |
||
| + | http://mizugadro.mydns.jp/PAPERS/2009vladir.pdf Preprint, Russian version<br> |
||
| + | D.Kouznetsov. Superexponential as special function. Vladikavkaz Mathematical Journal, 2010, v.12, issue 2, p.31-45. |
||
| + | </ref>, as the deviation is of order of \(10^{-14}\); the precision greatly exceeds the needs of the graphical illustration of the function. |
||
| + | |||
| + | ==Similar images and motivation== |
||
| + | The similar image appears as Figure 1 in the First publication about real-holomorphic [[natural tetration]] |
||
| + | <ref name="analuxp"/>. |
||
| + | |||
| + | The reason of the detailed description of so simple image is historic. Many colleagues are interested in [[history]] of physics and mathematics. They asked me, how did I guess the asymptotic behavior of the [[natural tetration]] at \(\mathrm i \infty\). The last request was in 2013 by [[Michael Moldenhauer]] |
||
| + | <ref> |
||
| + | Michael Moldenhauer. Question about tetration method. Private communication, Sat, 9 Nov 2013 01:11:53 -0800 (PST). |
||
| + | <i>.. how did you come up with the high-quality initial approximation "fit_3" mentioned in your paper about the tetrational function? |
||
| + | </i> |
||
| + | </ref>. |
||
| + | Functions \(\mathrm{fit}_2\) and \(\mathrm{fit}_3\) above provide the key. I used to check many fits. The \(\mathrm{fit}_2\) and \(\mathrm{Fit}_3\) |
||
| − | Similar figure for real and imaginary parts of the functions is also available as http://mizugadro.mydns.jp/t/index.php?title=File:Analuxp01u400.jpg |
||
| + | happened best to see the asymtotics. |
||
| − | Due to the transfer equation |
||
| + | In order not to repeat the same explanation again and again, I load the generators and, in particular, the code that includes \(\mathrm{fit}_3\) above. |
||
| − | $\exp(f(z))=f(z\!+\!1)$ |
||
| + | One can begin with \(\mathrm{fit}_2\) and see, that the simple fit can provide the camera-ready pictures at least in vicinity of the real axis. |
||
| + | This fit is already sufficient to see the asymptotics with naked eyes. The \(\mathrm{fit}_3\) and \(\mathrm{Fit}_6\) were arranged to confirm the guess: |
||
| + | the better is the approximation of tetration, the closer does it approach to the asymptotics. |
||
| + | After to postulate the asymptotic behaviour of the [[tetration]], it is not difficult to construct the algorithm for the precise evaluation. The [[Cauchi integral]] along the contour \(|\Re(z)|=1\) is simple straightforward way; perhaps, there exist other, even more efficient algorithms. |
||
| − | at moderate values of phase (smaller than $\pi$), the curves of the phase look as those for the imaginary part, displaced for -1 along the real axis; the same happen with curves for the |
||
| − | logamplitud. |
||
| + | ==[[C++]] generators of curves. picture e, the top== |
||
| − | ==Generators of the pictures and labels== |
||
| + | <pre> |
||
| − | ===[[C++]] generator of curves in picture a=== |
||
| − | <poem><nomathjax><nowiki> |
||
#include <math.h> |
#include <math.h> |
||
#include <stdio.h> |
#include <stdio.h> |
||
| Line 141: | Line 183: | ||
//char v[11000]; // v is working array |
//char v[11000]; // v is working array |
||
// printf("Output fig01a.eps\n"); |
// printf("Output fig01a.eps\n"); |
||
| − | FILE *o;o=fopen(" |
+ | FILE *o;o=fopen("analuxp01e.eps","w");ado(o,364,84); |
| − | fprintf(o," |
+ | fprintf(o,"182 42 translate\n 20 20 scale\n"); |
//DB sy=4.3/sinh(.04*N/2.); |
//DB sy=4.3/sinh(.04*N/2.); |
||
DB sy=2/sinh(.04*N/2.); |
DB sy=2/sinh(.04*N/2.); |
||
| − | DO(m,M1) X[m]=- |
+ | DO(m,M1) X[m]=-9.+.1*(m+.5); |
| − | DO(n,N1) Y[n]=sy*sinh(.04*(n+. |
+ | DO(n,N1) Y[n]=sy*sinh(.04*(n+.5-N/2)); |
//for(m=-10;m<9;m++) {M(m,-4)L(m,4)} |
//for(m=-10;m<9;m++) {M(m,-4)L(m,4)} |
||
| − | for(m=- |
+ | for(m=-9;m<10;m++) {M(m,-2)L(m,2)} |
| − | for(n=-2;n<3;n++) {M(- |
+ | for(n=-2;n<3;n++) {M(-9,n)L(9,n)} fprintf(o,".006 W 0 0 0 RGB S\n"); |
DO(m,M1)DO(n,N1){ |
DO(m,M1)DO(n,N1){ |
||
| Line 159: | Line 201: | ||
//for(m=96;m<106;m++){x=X[m]; |
//for(m=96;m<106;m++){x=X[m]; |
||
//for(m=95;m<106;m++){x=X[m]; |
//for(m=95;m<106;m++){x=X[m]; |
||
| − | for(m= |
+ | for(m=80;m<90;m++){x=X[m]; |
DO(n,N1){y=Y[n]; z=z_type(x,y); |
DO(n,N1){y=Y[n]; z=z_type(x,y); |
||
| − | + | // c=z+1.; |
|
| − | F[m*N1+n]= |
+ | F[m*N1+n]=z+1.; p=Re(z); q=Im(z); |
// if(p>-999 && p<999) g[m*N1+n]=p; |
// if(p>-999 && p<999) g[m*N1+n]=p; |
||
// if(q>-999 && q<999) f[m*N1+n]=q; |
// if(q>-999 && q<999) f[m*N1+n]=q; |
||
| Line 168: | Line 210: | ||
} |
} |
||
| − | for(m= |
+ | for(m=90;m<M1;m++) |
DO(n,N1) |
DO(n,N1) |
||
{ |
{ |
||
F[m*N1+n] = exp( F[(m-10)*N1+n] ); |
F[m*N1+n] = exp( F[(m-10)*N1+n] ); |
||
} |
} |
||
| − | for(m= |
+ | for(m=79;m>=0;m--) |
DO(n,N1) |
DO(n,N1) |
||
{ |
{ |
||
| Line 187: | Line 229: | ||
p=1; |
p=1; |
||
| − | conto(o,f,w,v,X,Y,M,N, (- |
+ | conto(o,f,w,v,X,Y,M,N, (-4 ),-5,5); fprintf(o,".04 W 1 0 0 RGB S\n"); |
| − | conto(o,f,w,v,X,Y,M,N, ( - |
+ | conto(o,f,w,v,X,Y,M,N, ( -3 ),-5,5); fprintf(o,".04 W 1 0 0 RGB S\n"); |
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-3.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n"); |
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-3.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n"); |
||
conto(o,f,w,v,X,Y,M,N, (-2. ),-2 ,2); fprintf(o,".03 W 1 0 0 RGB S\n"); |
conto(o,f,w,v,X,Y,M,N, (-2. ),-2 ,2); fprintf(o,".03 W 1 0 0 RGB S\n"); |
||
| Line 200: | Line 242: | ||
conto(o,f,w,v,X,Y,M,N, ( 2. ),-2 ,2); fprintf(o,".03 W 0 0 1 RGB S\n"); |
conto(o,f,w,v,X,Y,M,N, ( 2. ),-2 ,2); fprintf(o,".03 W 0 0 1 RGB S\n"); |
||
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 2.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n"); |
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 2.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n"); |
||
| − | conto(o,f,w,v,X,Y,M,N, ( |
+ | conto(o,f,w,v,X,Y,M,N, ( 3 ),-5,5); fprintf(o,".04 W 0 0 1 RGB S\n"); |
| − | conto(o,f,w,v,X,Y,M,N, ( |
+ | conto(o,f,w,v,X,Y,M,N, ( 4 ),-5,5); fprintf(o,".04 W 0 0 1 RGB S\n"); |
| − | conto(o,g,w,v,X,Y,M,N, (-4. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n"); |
||
| − | conto(o,g,w,v,X,Y,M,N, (-3. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n"); |
||
conto(o,g,w,v,X,Y,M,N, (-2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n"); |
conto(o,g,w,v,X,Y,M,N, (-2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n"); |
||
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-2.+.1*n),-p,p); fprintf(o,".01 W 1 0 0 RGB S\n"); |
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-2.+.1*n),-p,p); fprintf(o,".01 W 1 0 0 RGB S\n"); |
||
| Line 220: | Line 260: | ||
M(-10,0)L(-2,0)fprintf(o,".06 W 1 0 1 RGB S\n"); |
M(-10,0)L(-2,0)fprintf(o,".06 W 1 0 1 RGB S\n"); |
||
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
| − | + | system("epstopdf analuxp01e.eps"); |
|
| − | system(" |
+ | system( "open analuxp01e.pdf"); |
| − | system( "open analuxp01a.pdf"); |
||
getchar(); |
getchar(); |
||
system("killall Preview"); |
system("killall Preview"); |
||
} |
} |
||
| + | </pre> |
||
| + | ==[[C++]] generators of curves. Picture f== |
||
| − | </nowiki></nomathjax></poem> |
||
| + | <pre> |
||
| − | |||
| − | ===[[C++]] generator of curves in picture b=== |
||
| − | <poem><nomathjax><nowiki> |
||
| − | |||
#include <math.h> |
#include <math.h> |
||
#include <stdio.h> |
#include <stdio.h> |
||
| Line 251: | Line 288: | ||
#define Y(k) (dy*(k-K/2)) |
#define Y(k) (dy*(k-K/2)) |
||
printf("y_0=%6.3f y_K=%6.3f ",Y(0), Y(K)); |
printf("y_0=%6.3f y_K=%6.3f ",Y(0), Y(K)); |
||
| − | |||
int M=179,M1=M+1; |
int M=179,M1=M+1; |
||
| Line 260: | Line 296: | ||
char v[M1*N1]; // v is working array |
char v[M1*N1]; // v is working array |
||
// printf("Output fig01b.eps\n"); |
// printf("Output fig01b.eps\n"); |
||
| − | FILE *o;o=fopen(" |
+ | FILE *o;o=fopen("analuxp01f.eps","w");ado(o,364,84); |
| − | fprintf(o," |
+ | fprintf(o,"182 42 translate\n 20 20 scale\n"); |
//DB sy=4.3/sinh(.04*N/2.); |
//DB sy=4.3/sinh(.04*N/2.); |
||
DB sy=2/sinh(.04*N/2.); |
DB sy=2/sinh(.04*N/2.); |
||
| − | DO(m,M1) X[m]=- |
+ | DO(m,M1) X[m]=-9.+.1*(m-.5); |
| − | DO(n,N1) Y[n]=sy*sinh(.04*(n-. |
+ | DO(n,N1) Y[n]=sy*sinh(.04*(n-.5-N/2)); |
//for(m=-10;m<9;m++) {M(m,-4)L(m,4)} |
//for(m=-10;m<9;m++) {M(m,-4)L(m,4)} |
||
| − | for(m=- |
+ | for(m=-9;m<10;m++) {M(m,-2)L(m,2)} |
| − | for(n=-2;n<3;n++) {M(- |
+ | for(n=-2;n<3;n++) {M(-9,n)L(9,n)} fprintf(o,".006 W 0 0 0 RGB S\n"); |
| Line 279: | Line 315: | ||
//for(m=96;m<106;m++){x=X[m]; |
//for(m=96;m<106;m++){x=X[m]; |
||
//for(m=95;m<106;m++){x=X[m]; |
//for(m=95;m<106;m++){x=X[m]; |
||
| − | for(m= |
+ | for(m=81;m<91;m++){x=X[m]; |
DO(n,N1){y=Y[n]; z=z_type(x,y); |
DO(n,N1){y=Y[n]; z=z_type(x,y); |
||
// c=z+1.; |
// c=z+1.; |
||
| Line 289: | Line 325: | ||
} |
} |
||
| − | for(m= |
+ | for(m=91;m<M1;m++) |
DO(n,N1) |
DO(n,N1) |
||
{ |
{ |
||
F[m*N1+n] = exp( F[(m-10)*N1+n] ); |
F[m*N1+n] = exp( F[(m-10)*N1+n] ); |
||
} |
} |
||
| − | for(m= |
+ | for(m=80;m>=0;m--) |
DO(n,N1) |
DO(n,N1) |
||
{ |
{ |
||
| Line 308: | Line 344: | ||
p=.8; |
p=.8; |
||
| − | conto(o,f,w,v,X,Y,M,N, (- |
+ | conto(o,f,w,v,X,Y,M,N, ( -4 ),-4, 4); fprintf(o,".04 W 1 0 0 RGB S\n"); |
| − | conto(o,f,w,v,X,Y,M,N, ( - |
+ | conto(o,f,w,v,X,Y,M,N, ( -3 ),-4, 4); fprintf(o,".04 W 1 0 0 RGB S\n"); |
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-3.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n"); |
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-3.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n"); |
||
conto(o,f,w,v,X,Y,M,N, (-2. ),-2 ,2); fprintf(o,".03 W 1 0 0 RGB S\n"); |
conto(o,f,w,v,X,Y,M,N, (-2. ),-2 ,2); fprintf(o,".03 W 1 0 0 RGB S\n"); |
||
| Line 321: | Line 357: | ||
conto(o,f,w,v,X,Y,M,N, ( 2. ),-2 ,2); fprintf(o,".03 W 0 0 1 RGB S\n"); |
conto(o,f,w,v,X,Y,M,N, ( 2. ),-2 ,2); fprintf(o,".03 W 0 0 1 RGB S\n"); |
||
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 2.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n"); |
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 2.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n"); |
||
| − | conto(o,f,w,v,X,Y,M,N, ( |
+ | conto(o,f,w,v,X,Y,M,N, ( 3 ),-4, 4); fprintf(o,".04 W 0 0 1 RGB S\n"); |
| − | conto(o,f,w,v,X,Y,M,N, ( |
+ | conto(o,f,w,v,X,Y,M,N, ( 4 ),-4, 4); fprintf(o,".04 W 0 0 1 RGB S\n"); |
conto(o,g,w,v,X,Y,M,N, (-2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n"); |
conto(o,g,w,v,X,Y,M,N, (-2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n"); |
||
| Line 338: | Line 374: | ||
M(-10,0)L(-2,0)fprintf(o,".04 W 1 0 1 RGB S\n"); |
M(-10,0)L(-2,0)fprintf(o,".04 W 1 0 1 RGB S\n"); |
||
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
| − | system("epstopdf |
+ | system("epstopdf analuxp01f.eps"); |
| − | system( "open |
+ | system( "open analuxp01f.eps"); |
getchar(); |
getchar(); |
||
system("killall Preview"); |
system("killall Preview"); |
||
} |
} |
||
| + | </pre> |
||
| + | ==[[C++]] generators of curves. Picture g== |
||
| − | </nowiki></nomathjax></poem> |
||
| + | <pre> |
||
| − | ===[[C++]] generator of curves in picture c=== |
||
| − | <poem><nomathjax><nowiki> |
||
| − | |||
#include <math.h> |
#include <math.h> |
||
#include <stdio.h> |
#include <stdio.h> |
||
| Line 358: | Line 393: | ||
#define Im(x) x.imag() |
#define Im(x) x.imag() |
||
#define I z_type(0.,1.) |
#define I z_type(0.,1.) |
||
| − | //#include " |
+ | //#include "f4c.cin" |
#include "conto.cin" |
#include "conto.cin" |
||
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd; |
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd; |
||
| Line 379: | Line 414: | ||
// printf("Output fig01c.eps\n"); |
// printf("Output fig01c.eps\n"); |
||
| − | FILE *o;o=fopen(" |
+ | FILE *o;o=fopen("analuxp01g.eps","w");ado(o,364,204); |
| − | fprintf(o," |
+ | fprintf(o,"182 102 translate\n 20 20 scale\n"); |
DB sy=4.3/sinh(.04*N/2.); |
DB sy=4.3/sinh(.04*N/2.); |
||
| − | DO(m,M1) X[m]=- |
+ | DO(m,M1) X[m]=-9+.1*m; |
DO(n,N1) Y[n]=sy*sinh(.04*(n-N/2)); |
DO(n,N1) Y[n]=sy*sinh(.04*(n-N/2)); |
||
| − | for(m=- |
+ | for(m=-9;m<10;m++) {M(m,-4)L(m,4)} |
| − | for(n=-4;n<5;n++) {M( - |
+ | for(n=-4;n<5;n++) {M( -9,n)L(9,n)} fprintf(o,".006 W 0 0 0 RGB S\n"); |
DO(m,M1)DO(n,N1){ |
DO(m,M1)DO(n,N1){ |
||
| Line 393: | Line 428: | ||
f[m*N1+n]=9999; |
f[m*N1+n]=9999; |
||
} |
} |
||
| − | for(m= |
+ | for(m=0;m<10;m++){int m1; x=X[m]; |
DO(n,N1){y=Y[n]; z=z_type(x,y); //c=F4(z-1.); |
DO(n,N1){y=Y[n]; z=z_type(x,y); //c=F4(z-1.); |
||
if(y>.3) c=Zo+exp(Zo*(z)+r); |
if(y>.3) c=Zo+exp(Zo*(z)+r); |
||
| Line 419: | Line 454: | ||
p=2; |
p=2; |
||
| − | conto(o,f,w,v,X,Y,M,N, (- |
+ | conto(o,f,w,v,X,Y,M,N, ( -4. ),-999,999); fprintf(o,".04 W 1 0 0 RGB S\n"); |
| − | conto(o,f,w,v,X,Y,M,N, ( - |
+ | conto(o,f,w,v,X,Y,M,N, ( -3. ),-999,999); fprintf(o,".04 W 1 0 0 RGB S\n"); |
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-3.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n"); |
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-3.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n"); |
||
conto(o,f,w,v,X,Y,M,N, (-2. ),-9 ,9); fprintf(o,".03 W 1 0 0 RGB S\n"); |
conto(o,f,w,v,X,Y,M,N, (-2. ),-9 ,9); fprintf(o,".03 W 1 0 0 RGB S\n"); |
||
| Line 432: | Line 467: | ||
conto(o,f,w,v,X,Y,M,N, ( 2. ),-9 ,9); fprintf(o,".03 W 0 0 1 RGB S\n"); |
conto(o,f,w,v,X,Y,M,N, ( 2. ),-9 ,9); fprintf(o,".03 W 0 0 1 RGB S\n"); |
||
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 2.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n"); |
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 2.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n"); |
||
| − | conto(o,f,w,v,X,Y,M,N, ( |
+ | conto(o,f,w,v,X,Y,M,N, ( 3. ),-999,999); fprintf(o,".04 W 0 0 1 RGB S\n"); |
| − | conto(o,f,w,v,X,Y,M,N, ( |
+ | conto(o,f,w,v,X,Y,M,N, ( 4. ),-999,999); fprintf(o,".04 W 0 0 1 RGB S\n"); |
conto(o,g,w,v,X,Y,M,N, (-2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n"); |
conto(o,g,w,v,X,Y,M,N, (-2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n"); |
||
| Line 450: | Line 485: | ||
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
//system( "ggv fig01c.eps"); |
//system( "ggv fig01c.eps"); |
||
| − | system("epstopdf |
+ | system("epstopdf analuxp01g.eps"); |
| − | system( "open |
+ | system( "open analuxp01g.eps"); |
getchar(); |
getchar(); |
||
system("killall Preview"); |
system("killall Preview"); |
||
} |
} |
||
| + | </pre> |
||
| + | ==[[C++]] generators of curves. Picture h== |
||
| − | </nowiki></nomathjax></poem> |
||
| − | |||
| − | ===[[C++]] solver of the integral equation with integral Cauchi=== |
||
| − | <poem><nomathjax><nowiki> |
||
| + | // file [[analuxpf4c.cin]] |
||
| + | <pre> |
||
#include <math.h> |
#include <math.h> |
||
#include <stdio.h> |
#include <stdio.h> |
||
#include <stdlib.h> |
#include <stdlib.h> |
||
#define DB double |
#define DB double |
||
| + | #define DO(x,y) for(x=0;x<y;x++) |
||
#include <complex.h> |
#include <complex.h> |
||
#define z_type complex<double> |
#define z_type complex<double> |
||
| − | #define Re(x) |
+ | #define Re(x) x.real() |
| − | #define Im(x) |
+ | #define Im(x) x.imag() |
#define I z_type(0.,1.) |
#define I z_type(0.,1.) |
||
| + | #include "analuxpf4c.cin" |
||
| + | #include "conto.cin" |
||
| + | int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd; |
||
z_type Zo=z_type(.31813150520476413, 1.3372357014306895); |
z_type Zo=z_type(.31813150520476413, 1.3372357014306895); |
||
z_type Zc=z_type(.31813150520476413,-1.3372357014306895); |
z_type Zc=z_type(.31813150520476413,-1.3372357014306895); |
||
| + | int K=200,K1=K+1; |
||
| + | DB A=10.; DB dy=2*A/K; printf("dy=%6.3f",dy); |
||
| + | #define Y(k) (dy*(k-K/2)) |
||
| + | printf("y_0=%6.3f y_K=%6.3f ",Y(0), Y(K)); |
||
| + | int M=180,M1=M+1; |
||
| − | #define DO(x,y) for(x=0;x<y;x++) |
||
| + | int N=80,N1=N+1; |
||
| − | #include "f3c.cin" |
||
| + | DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
||
| − | #include"ado.cin" |
||
| + | //z_type tm,tp,F[M1*N1]; |
||
| − | #define DO(x,y) for(x=0;x<y;x++) |
||
| + | z_type tm,tp,F[181*81]; |
||
| − | #define M(x,y) fprintf(o,"%5.3f %5.3f M\n",1.*(x),1.*(y)); |
||
| + | char v[M1*N1]; // v is working array |
||
| − | #define L(x,y) fprintf(o,"%5.3f %5.3f L\n",1.*(x),1.*(y)); |
||
| + | // printf("Output fig01d.eps\n"); |
||
| − | #define o(x,y) fprintf(o,"%5.3f %5.3f o\n",1.*(x),1.*(y)); |
||
| + | FILE *o;o=fopen("analuxp01h.eps","w");ado(o,364,204); |
||
| + | fprintf(o,"182 102 translate\n 20 20 scale\n"); |
||
| + | DB sy=4.3/sinh(.04*N/2.); |
||
| − | int main(){ int j,k,m,n; DB x,y, u, t; z_type z,c,d, cu,cd; |
||
| + | DO(m,M1) X[m]=-9.+.1*m; |
||
| − | #include "GLxw2048.inc" |
||
| + | DO(n,N1) Y[n]=sy*sinh(.04*(n-N/2)); |
||
| − | int K=NPO; DB A=24.; printf("K=%3d A=%3.1f\n",K,A); |
||
| − | int J=K-1; |
||
| − | // z_type E[K],F[K],G[K],H[K]; |
||
| − | z_type |
||
| − | E[2048], |
||
| − | F[2048], |
||
| − | G[2048], |
||
| − | H[2048]; |
||
| + | for(m=-9;m<10;m++) {M(m,-4)L(m,4)} |
||
| − | printf( "plot in analuxp0first.eps\n"); |
||
| + | for(n=-4;n<5;n++) {M( -9,n)L(9,n)} fprintf(o,".006 W 0 0 0 RGB S\n"); |
||
| − | FILE *o;o=fopen("analuxp0first.eps","w");ado(o,484,32); |
||
| − | fprintf(o,"242 16 translate\n 10 10 scale\n"); |
||
| − | for(j=-10;j<11;j+=1){M(j,-1.5)L(j,1.5);} |
||
| − | M(-10 , 1)L(10 , 1); |
||
| − | M(-10 ,-1)L(10 ,-1); fprintf(o,".006 W S\n"); |
||
| − | M(-10.1,0)L(10.1,0); fprintf(o,".02 W S\n"); |
||
| − | fprintf(o,".01 W S\n 1 setlinejoin\n"); |
||
| − | DO(n,K){y=GLx[n]*A; |
||
| − | if(y<-3) E[n]=F[n]=G[n]=Zc; |
||
| − | else {if(y>3) E[n]=F[n]=G[n]=Zo; |
||
| − | else { F[n]=c=f3(z_type(0.,y)); |
||
| − | E[n]=log(c); |
||
| − | G[n]=exp(c); |
||
| − | } |
||
| − | } |
||
| − | } |
||
| − | DO(k,K){y=GLx[k]*A; u=Re(F[k]);if(k==0)M(y,u)else L(y,u)} |
||
| − | DO(k,K){y=GLx[k]*A; u=Im(F[k]);if(k==0)M(y,u)else L(y,u)} fprintf(o,".08 W 1 .4 1 RGB S\n"); |
||
| − | + | DO(m,M1)DO(n,N1){ |
|
| + | g[m*N1+n]=9999; |
||
| − | for(n=0;n<K;n+=2) |
||
| + | f[m*N1+n]=9999; |
||
| − | { j=J-n; y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n); |
||
| + | } |
||
| − | DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );} |
||
| + | //for(m=96;m<106;m++){x=X[m]; |
||
| − | cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) ); |
||
| + | //for(m=90;m<100;m++){x=X[m]; |
||
| − | cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) ); |
||
| + | for(m=86;m<96;m++){x=X[m]; |
||
| − | c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd; |
||
| − | + | DO(n,N1){y=Y[n]; z=z_type(x,y); |
|
| − | + | c=F4(z); |
|
| − | + | F[m*N1+n]=c; p=Re(c); q=Im(c); |
|
| − | + | if(p>-999 && p<999) g[m*N1+n]=p; |
|
| + | if(q>-999 && q<999) f[m*N1+n]=q; |
||
| + | } |
||
| + | } |
||
| + | for(m=96;m<M1;m++) |
||
| − | DO(k,K){y=GLx[k]*A; u=Re(F[k]);if(k==0)M(y,u)else L(y,u)} |
||
| + | DO(n,N1) |
||
| − | DO(k,K){y=GLx[k]*A; u=Im(F[k]);if(k==0)M(y,u)else L(y,u)} fprintf(o,".06 W 1 0 0 RGB S\n"); |
||
| + | { |
||
| + | F[m*N1+n] = exp( F[(m-10)*N1+n] ); |
||
| + | } |
||
| + | for(m=85;m>=0;m--) |
||
| + | DO(n,N1) |
||
| + | { |
||
| + | F[m*N1+n] = log( F[(m+10)*N1+n] ); |
||
| + | } |
||
| − | DO( |
+ | DO(m,M1) |
| − | + | DO(n,N1){ |
|
| + | c=F[m*N1+n]; p=Re(c); q=Im(c); |
||
| − | for(n=1;n<K;n+=2) |
||
| + | if(p>-999 && p<999) g[m*N1+n]=p; |
||
| − | { j=J-n; y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n); |
||
| + | if(q>-999 && q<999) f[m*N1+n]=q; |
||
| − | DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );} |
||
| + | } |
||
| − | cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) ); |
||
| − | cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) ); |
||
| − | c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd; |
||
| − | if(abs(n-K/2)<4)printf("%3d %6.3f %9.6f %9.6f %9.6f %9.6f\n",n,y,Re(F[n]),Im(F[n]),Re(c),Im(c)); |
||
| − | E[n]=log(c); E[j]=conj(E[n]); |
||
| − | F[n]=c; F[j]=conj(c); |
||
| − | G[n]=exp(c); G[j]=conj(G[n]);} |
||
| + | p=2; |
||
| − | DO(k,K){y=GLx[k]*A; u=Re(F[k]);if(k==0)M(y,u)else L(y,u)} |
||
| − | + | conto(o,f,w,v,X,Y,M,N, (-4 ),-999,999); fprintf(o,".04 W 1 0 0 RGB S\n"); |
|
| + | conto(o,f,w,v,X,Y,M,N, ( -3 ),-999,999); fprintf(o,".04 W 1 0 0 RGB S\n"); |
||
| + | for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-3.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n"); |
||
| + | conto(o,f,w,v,X,Y,M,N, (-2. ),-9 ,9); fprintf(o,".03 W 1 0 0 RGB S\n"); |
||
| + | for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-2.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n"); |
||
| + | conto(o,f,w,v,X,Y,M,N, (-1. ),-9 ,9); fprintf(o,".03 W 1 0 0 RGB S\n"); |
||
| + | for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-1.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n"); |
||
| + | conto(o,f,w,v,X,Y,M,N, (0. ),-999,999); fprintf(o,".02 W 0 0 0 RGB S\n"); |
||
| + | for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( .1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n"); |
||
| + | conto(o,f,w,v,X,Y,M,N, ( 1. ),-9 ,9); fprintf(o,".03 W 0 0 1 RGB S\n"); |
||
| + | for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 1.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n"); |
||
| + | conto(o,f,w,v,X,Y,M,N, ( 2. ),-9 ,9); fprintf(o,".03 W 0 0 1 RGB S\n"); |
||
| + | for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 2.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n"); |
||
| + | conto(o,f,w,v,X,Y,M,N, ( 3 ),-99,99); fprintf(o,".04 W 0 0 1 RGB S\n"); |
||
| + | conto(o,f,w,v,X,Y,M,N, ( 4 ),-99,99); fprintf(o,".04 W 0 0 1 RGB S\n"); |
||
| + | // conto(o,f,w,v,X,Y,M,N, ( M_PI ),-99,99); fprintf(o,".04 W 1 0 1 RGB S\n"); |
||
| + | // conto(o,f,w,v,X,Y,M,N, (3*M_PI ),-99,99); fprintf(o,".04 W 1 0 1 RGB S\n"); |
||
| + | conto(o,g,w,v,X,Y,M,N, (-2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n"); |
||
| − | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
| + | for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-2.+.1*n),-p,p); fprintf(o,".01 W 1 0 0 RGB S\n"); |
||
| − | //system( "ggv fig0first.eps"); |
||
| + | conto(o,g,w,v,X,Y,M,N, (-1. ),-3,3); fprintf(o,".03 W 0 0 0 RGB S\n"); |
||
| − | system("epstopdf analuxp0first.eps"); |
||
| + | for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-1.+.1*n),-p,p); fprintf(o,".01 W 1 0 0 RGB S\n"); |
||
| − | system( "open analuxp0first.pdf"); |
||
| + | conto(o,g,w,v,X,Y,M,N, (0. ),-99,99); fprintf(o,".03 W 0 0 0 RGB S\n"); |
||
| − | |||
| + | for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, ( .1*n),-p,p); fprintf(o,".01 W 0 0 1 RGB S\n"); |
||
| − | printf("plot in analuxp0test.eps\n"); |
||
| + | conto(o,g,w,v,X,Y,M,N, ( 1. ),-3,3); fprintf(o,".03 W 0 0 0 RGB S\n"); |
||
| − | o=fopen("analuxp0test.eps","w");ado(o,484,52); |
||
| + | for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, ( 1.+.1*n),-p,p); fprintf(o,".01 W 0 0 1 RGB S\n"); |
||
| − | fprintf(o,"242 16 translate\n 10 10 scale\n"); |
||
| + | conto(o,g,w,v,X,Y,M,N, ( 2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n"); |
||
| − | for(j=-10;j<11;j+=1){M(j,-1.5)L(j,1.5);} |
||
| + | conto(o,g,w,v,X,Y,M,N, ( 3. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n"); |
||
| − | M(-10 , 1)L(10 , 1); |
||
| − | + | conto(o,g,w,v,X,Y,M,N, ( 4. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n"); |
|
| − | M(-10.1,0)L(10.1,0); fprintf(o,".01 W S\n 1 setlinejoin\n"); |
||
| − | |||
| − | DO(k,K){y=GLx[k]*A; u=100*Re(H[k]-F[k]);if(k==0)M(y,u)else L(y,u)} |
||
| − | DO(k,K){y=GLx[k]*A; u=100*Im(H[k]-F[k]);if(k==0)M(y,u)else L(y,u)} fprintf(o,".04 W 1 0 0 RGB S\n"); |
||
| − | |||
| − | DO(n,K) H[n]=F[n]; |
||
| − | DO(n,K){ j=J-n; y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n); |
||
| − | DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );} |
||
| − | cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) ); |
||
| − | cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) ); |
||
| − | c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd; |
||
| − | if(abs(n-K/2)<4)printf("%3d %6.3f %9.6f %9.6f %9.6f %9.6f\n",n,y,Re(F[n]),Im(F[n]),Re(c),Im(c)); |
||
| − | E[n]=log(c); E[j]=conj(E[n]); |
||
| − | F[n]=c; F[j]=conj(c); |
||
| − | G[n]=exp(c); G[j]=conj(G[n]);} |
||
| − | |||
| − | DO(k,K){y=GLx[k]*A; u=100*Re(H[k]-F[k]);if(k==0)M(y,u)else L(y,u)} |
||
| − | DO(k,K){y=GLx[k]*A; u=100*Im(H[k]-F[k]);if(k==0)M(y,u)else L(y,u)} fprintf(o,".03 W 0 1 0 RGB S\n"); |
||
| − | |||
| − | DO(n,K) H[n]=F[n]; |
||
| − | DO(n,K){ j=J-n; y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n); |
||
| − | DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );} |
||
| − | cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) ); |
||
| − | cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) ); |
||
| − | c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd; |
||
| − | if(abs(n-K/2)<4)printf("%3d %6.3f %9.6f %9.6f %9.6f %9.6f\n",n,y,Re(F[n]),Im(F[n]),Re(c),Im(c)); |
||
| − | E[n]=log(c); E[j]=conj(E[n]); |
||
| − | F[n]=c; F[j]=conj(c); |
||
| − | G[n]=exp(c); G[j]=conj(G[n]);} |
||
| − | |||
| − | DO(k,K){y=GLx[k]*A; u=100*Re(H[k]-F[k]);if(k==0)M(y,u)else L(y,u)} |
||
| − | DO(k,K){y=GLx[k]*A; u=100*Im(H[k]-F[k]);if(k==0)M(y,u)else L(y,u)} fprintf(o,".02 W 0 0 1 RGB S\n"); |
||
| + | M(-10,0)L(-2,0)fprintf(o,".04 W 1 0 1 RGB S\n"); |
||
| − | DO(n,K) H[n]=F[n]; |
||
| + | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
| − | DO(m,64) |
||
| + | //system( "ggv fig01d.eps"); |
||
| − | for(n=0;n<K;n+=2) |
||
| + | system("epstopdf analuxp01h.eps"); |
||
| − | { j=J-n; y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n); |
||
| + | system( "open analuxp01h.eps"); |
||
| − | DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );} |
||
| + | getchar(); |
||
| − | cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) ); |
||
| + | system("killall Preview"); |
||
| − | cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) ); |
||
| − | c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd; |
||
| − | if(n==K/2)printf("%3d %17.13f %17.14f %17.14f %17.14f\n",m,Re(F[n]),Im(F[n]),Re(c),Im(c)); |
||
| − | E[n]=log(c); E[j]=conj(E[n]); |
||
| − | F[n]=c; F[j]=conj(c); |
||
| − | G[n]=exp(c); G[j]=conj(G[n]);} |
||
| − | |||
| − | DO(k,K){y=GLx[k]*A; u=100*Re(H[k]-F[k]);if(k==0)M(y,u)else L(y,u)} |
||
| − | DO(k,K){y=GLx[k]*A; u=100*Im(H[k]-F[k]);if(k==0)M(y,u)else L(y,u)} fprintf(o,".02 W .4 0 .4 RGB S\n"); |
||
| − | |||
| − | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
| − | //system( "ggv fig0test.eps"); |
||
| − | system("epstopdf analuxp0test.eps"); |
||
| − | system( "open analuxp0test.pdf"); |
||
| − | |||
| − | o=fopen("analuxp0.dat","w"); |
||
| − | DO(k,K) fprintf(o,"%4d %18.14f %18.14f\n",k,Re(F[k]),Im(F[k])); |
||
| − | fclose(o); |
||
| − | |||
| − | getchar(); system("killall Preview"); |
||
} |
} |
||
| + | </pre> |
||
| − | </nowiki></nomathjax></poem> |
||
| − | ===[[C++]] generator of the input file=== |
||
| − | <poem><nomathjax><nowiki> |
||
| − | #include <math.h> |
||
| − | #include <stdio.h> |
||
| − | #include <stdlib.h> |
||
| − | #define DB double |
||
| − | #define DO(x,y) for(x=0;x<y;x++) |
||
| − | int main(){ int k,n; DB x,y; FILE *oo,*o; |
||
| − | int K=2048; DB A=24.; printf("K=%3d A=%3.1f\n",K,A); |
||
| − | oo=fopen("analuxp0.dat","r"); |
||
| − | o=fopen("analuxpf2048.inc","w"); |
||
| − | fprintf(o,"DB A=%8.4f;\n",A); |
||
| − | fprintf(o,"int K=%4d;\n",K); |
||
| − | fprintf(o,"// perhaps, A=24, and NPO =2048; NPO is supposed to be defined in GLxw.\n"); |
||
| − | fprintf(o,"z_type F[%4d]={\n",K); |
||
| − | //fscanf(oo,"%d%lf%lf",&n,&x,&y); printf("%5d %5d %17.14f %17.14f \n",n,x,y); |
||
| − | DO(k,K) |
||
| − | { |
||
| − | fscanf(oo,"%d%lf%lf",&n,&x,&y);if(k!=n){printf("%5d %5d %17.14f %17.14f ?\n",k,n,x,y);} |
||
| − | fprintf(o,"z_type(%16.14f,%16.14f)",x,y); |
||
| − | if(k<K-1) fprintf(o,",\n"); |
||
| − | else fprintf(o,"};\n"); |
||
| − | } |
||
| − | fclose(oo); |
||
| − | fclose(o); |
||
| − | printf("read from analuxp0.dat write analuxpf2048.inc\n"); |
||
| − | printf("Perhaps, you need also analuxp10x1.cin \n"); |
||
| − | } |
||
| − | |||
| − | </nowiki></nomathjax></poem> |
||
| − | + | ==[[C++]] generators of curves. Picture i== |
|
| − | <poem><nomathjax><nowiki> |
||
| + | <pre> |
||
#include <math.h> |
#include <math.h> |
||
#include <stdio.h> |
#include <stdio.h> |
||
| Line 660: | Line 621: | ||
#define Im(x) x.imag() |
#define Im(x) x.imag() |
||
#define I z_type(0.,1.) |
#define I z_type(0.,1.) |
||
| − | #include "analuxpf4c.cin" |
+ | //#include "analuxpf4c.cin" |
| + | #include "fsexp.cin" |
||
#include "conto.cin" |
#include "conto.cin" |
||
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd; |
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd; |
||
| Line 671: | Line 633: | ||
int M=180,M1=M+1; |
int M=180,M1=M+1; |
||
| − | int N= |
+ | int N=160,N1=N+1; |
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
||
//z_type tm,tp,F[M1*N1]; |
//z_type tm,tp,F[M1*N1]; |
||
| − | z_type tm,tp,F[181* |
+ | z_type tm,tp,F[181*161]; |
char v[M1*N1]; // v is working array |
char v[M1*N1]; // v is working array |
||
// printf("Output fig01d.eps\n"); |
// printf("Output fig01d.eps\n"); |
||
| − | FILE *o;o=fopen(" |
+ | FILE *o;o=fopen("analuxp01i.eps","w");ado(o,364,204); |
| − | fprintf(o," |
+ | fprintf(o,"182 102 translate\n 20 20 scale\n"); |
| − | DB sy=4.3/sinh(. |
+ | DB sy=4.3/sinh(.02*N/2.); |
| − | DO(m,M1) X[m]=- |
+ | DO(m,M1) X[m]=-9.+.1*m; |
| − | DO(n,N1) Y[n]=sy*sinh(. |
+ | DO(n,N1) Y[n]=sy*sinh(.02*(n-.5-N/2)); |
| − | + | for(m=-9;m<10;m++) {M(m,-4)L(m,4)} |
|
| − | for( |
+ | for(n=-4;n<5;n++) {M( -9,n)L(9,n)} fprintf(o,".006 W 0 0 0 RGB S\n"); |
| − | for(n=-4;n<5;n++) {M( -10,n)L(8,n)} fprintf(o,".006 W 0 0 0 RGB S\n"); |
||
| Line 694: | Line 655: | ||
} |
} |
||
//for(m=96;m<106;m++){x=X[m]; |
//for(m=96;m<106;m++){x=X[m]; |
||
| − | for(m= |
+ | //for(m=90;m<100;m++){x=X[m]; |
| + | for(m=86;m<96;m++){x=X[m]; |
||
DO(n,N1){y=Y[n]; z=z_type(x,y); |
DO(n,N1){y=Y[n]; z=z_type(x,y); |
||
| − | c=F4(z); |
+ | //c=F4(z); |
| + | c=FSEXP(z); |
||
F[m*N1+n]=c; p=Re(c); q=Im(c); |
F[m*N1+n]=c; p=Re(c); q=Im(c); |
||
if(p>-999 && p<999) g[m*N1+n]=p; |
if(p>-999 && p<999) g[m*N1+n]=p; |
||
| Line 703: | Line 666: | ||
} |
} |
||
| − | for(m= |
+ | for(m=96;m<M1;m++) |
DO(n,N1) |
DO(n,N1) |
||
{ |
{ |
||
F[m*N1+n] = exp( F[(m-10)*N1+n] ); |
F[m*N1+n] = exp( F[(m-10)*N1+n] ); |
||
} |
} |
||
| − | for(m= |
+ | for(m=85;m>=0;m--) |
DO(n,N1) |
DO(n,N1) |
||
{ |
{ |
||
| Line 722: | Line 685: | ||
p=2; |
p=2; |
||
| − | conto(o,f,w,v,X,Y,M,N, (- |
+ | conto(o,f,w,v,X,Y,M,N, (-4 ),-999,999); fprintf(o,".04 W 1 0 0 RGB S\n"); |
| − | conto(o,f,w,v,X,Y,M,N, ( - |
+ | conto(o,f,w,v,X,Y,M,N, ( -3 ),-999,999); fprintf(o,".04 W 1 0 0 RGB S\n"); |
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-3.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n"); |
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-3.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n"); |
||
conto(o,f,w,v,X,Y,M,N, (-2. ),-9 ,9); fprintf(o,".03 W 1 0 0 RGB S\n"); |
conto(o,f,w,v,X,Y,M,N, (-2. ),-9 ,9); fprintf(o,".03 W 1 0 0 RGB S\n"); |
||
| Line 735: | Line 698: | ||
conto(o,f,w,v,X,Y,M,N, ( 2. ),-9 ,9); fprintf(o,".03 W 0 0 1 RGB S\n"); |
conto(o,f,w,v,X,Y,M,N, ( 2. ),-9 ,9); fprintf(o,".03 W 0 0 1 RGB S\n"); |
||
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 2.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n"); |
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 2.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n"); |
||
| − | conto(o,f,w,v,X,Y,M,N, ( |
+ | conto(o,f,w,v,X,Y,M,N, ( 3 ),-99,99); fprintf(o,".04 W 0 0 1 RGB S\n"); |
| − | conto(o,f,w,v,X,Y,M,N, ( |
+ | conto(o,f,w,v,X,Y,M,N, ( 4 ),-99,99); fprintf(o,".04 W 0 0 1 RGB S\n"); |
| + | // conto(o,f,w,v,X,Y,M,N, ( M_PI ),-99,99); fprintf(o,".04 W 1 0 1 RGB S\n"); |
||
| + | // conto(o,f,w,v,X,Y,M,N, (3*M_PI ),-99,99); fprintf(o,".04 W 1 0 1 RGB S\n"); |
||
conto(o,g,w,v,X,Y,M,N, (-2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n"); |
conto(o,g,w,v,X,Y,M,N, (-2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n"); |
||
| Line 753: | Line 718: | ||
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
//system( "ggv fig01d.eps"); |
//system( "ggv fig01d.eps"); |
||
| − | system("epstopdf |
+ | system("epstopdf analuxp01i.eps"); |
| − | system( "open |
+ | system( "open analuxp01i.eps"); |
getchar(); |
getchar(); |
||
system("killall Preview"); |
system("killall Preview"); |
||
} |
} |
||
| + | </pre> |
||
| − | </nowiki></nomathjax></poem> |
||
| − | + | ==[[Latex]] generator of labels== |
|
| + | |||
| − | <poem><nomathjax><nowiki> |
||
| + | <pre> |
||
\documentclass[12pt]{article} |
\documentclass[12pt]{article} |
||
\usepackage{geometry} |
\usepackage{geometry} |
||
| Line 780: | Line 746: | ||
\sx{1.}{\begin{picture}(370,80) |
\sx{1.}{\begin{picture}(370,80) |
||
%\put(5,5){\includegraphics{fig01a}} |
%\put(5,5){\includegraphics{fig01a}} |
||
| − | \put(6,6){\includegraphics{ |
+ | \put(6,6){\includegraphics{analuxp01e}} |
| − | \put( |
+ | \put(11,71){\sx{2}{e}} |
\put( 0,82){\sx{1.2}{$y$}} |
\put( 0,82){\sx{1.2}{$y$}} |
||
\put( 0,63){\sx{1.1}{$1$}} |
\put( 0,63){\sx{1.1}{$1$}} |
||
| Line 796: | Line 762: | ||
\put(346,-2){\sx{1.1}{$8$}} |
\put(346,-2){\sx{1.1}{$8$}} |
||
\put(362,-2){\sx{1.2}{$x$}} |
\put(362,-2){\sx{1.2}{$x$}} |
||
| + | |||
| − | \put(95,52){\sx{.8}{$v\!=\!1$}} |
||
| − | \put( |
+ | \put(-4,36){\sx{.8}{$u\!=\!0.4$}} |
| + | |||
| − | \put(172,24.2){\sx{.8}{\rot{32}{$u\!=\!0$}\ero}} |
||
| − | \put( |
+ | \put(156,56){\sx{.8}{\rot{56}{$v\!=\!1$}\ero}} |
| − | \put( |
+ | \put(152,24){\sx{.8}{\rot{32}{$u\!=\!0$}\ero}} |
| + | |||
| + | \put(21,63){\sx{.8}{$v\!=\!1.4$}} |
||
| + | |||
| + | \put(77,52){\sx{.8}{$v\!=\!1$}} |
||
| + | %\put(169,85.6){\sx{.8}{\rot{0.}{$v\!=\!2$}\ero}} |
||
| + | \put(169,65.6){\sx{.8}{\rot{0.}{$v\!=\!1$}\ero}} |
||
| + | \put(161,45.6){\sx{.8}{\rot{0.}{$v\!=\!0$}\ero}} |
||
| + | %\put(170,25){\sx{.8}{\rot{0.}{$v\!=\!-1$}\ero}} |
||
| + | \put(192,38){\sx{.8}{\rot{90}{$u\!=\!1$}\ero}} |
||
| + | \put(206,38){\sx{.8}{\rot{90}{$u\!=\!2$}\ero}} |
||
\end{picture}} |
\end{picture}} |
||
\sx{1.}{\begin{picture}(370,96) |
\sx{1.}{\begin{picture}(370,96) |
||
| − | \put( 6,6){\includegraphics{ |
+ | \put( 6,6){\includegraphics{analuxp01f}} |
| − | \put( |
+ | \put(11,71){\sx{2}{f}} |
\put( 0,82){\sx{1.2}{$y$}} |
\put( 0,82){\sx{1.2}{$y$}} |
||
\put( 0,63){\sx{1.1}{$1$}} |
\put( 0,63){\sx{1.1}{$1$}} |
||
| Line 820: | Line 796: | ||
\put(346,-2){\sx{1.1}{$8$}} |
\put(346,-2){\sx{1.1}{$8$}} |
||
\put(362,-2){\sx{1.2}{$x$}} |
\put(362,-2){\sx{1.2}{$x$}} |
||
| + | |||
| − | \multiput(40,66)(90,21){2}{\sx{.8}{$v\!=\!1.4$}} |
||
| − | \ |
+ | \put(-4,36){\sx{.8}{$u\!=\!0.4$}} |
| − | \multiput( |
+ | \multiput(20,66)(90,21){2}{\sx{.8}{$v\!=\!1.4$}} |
| − | \multiput( |
+ | \multiput(73,77)(-90,-21){1}{\sx{.8}{$u\!=\!0.4$}} |
| − | \ |
+ | \multiput(163,86)(-90,-21){2}{\sx{.8}{$v\!=\!1.2$}} |
| − | \ |
+ | \multiput(165,73)(-90,-21){2}{\sx{.8}{$v\!=\!1$}} |
| − | \put( |
+ | \put(164,46){\sx{.8}{$v\!=\!0$}} |
| − | \put( |
+ | \put(164,20){\sx{.8}{$v\!=\!-1$}} |
| − | \multiput( |
+ | \multiput(157,21)(90,-20.6){2}{\sx{.8}{\rot{46}{$u\!=\!0$}\ero}} |
| − | \ |
+ | \put(191,39){\sx{.8}{\rot{90}{$u\!=\!1$}\ero}} |
| + | \multiput(74,13)(90,-21){1}{\sx{.8}{$u\!=\!0.4$}} |
||
| + | \multiput(18,26)(90,-21){1}{\sx{.8}{$v\!=\!-1.4$}} |
||
\end{picture}} |
\end{picture}} |
||
\sx{1.}{\begin{picture}(366,176) |
\sx{1.}{\begin{picture}(366,176) |
||
| − | \put( 6,-14){\includegraphics{ |
+ | \put( 6,-14){\includegraphics{analuxp01g}} |
| − | \put(35,153){\sx{1.}{$u\!+\!\mathrm i v \approx L\approx 0.3+1.3\mathrm i$}} |
+ | \put(35,153){\sx{1.}{$u\!+\!\mathrm i v \!\approx\! L\!\approx\! 0.3\!+\!1.3\mathrm i$}} |
| − | \put(33,13){\sx{1.}{$u\!+\!\mathrm i v \approx L^*\approx 0.3-1.3\mathrm i$}} |
+ | \put(33,13){\sx{1.}{$u\!+\!\mathrm i v \!\approx\! L^*\!\approx\! 0.3\!-\!1.3\mathrm i$}} |
| − | \put( |
+ | \put(11,152){\sx{2}{g}} |
\put( 0,164){\sx{1.2}{$y$}} |
\put( 0,164){\sx{1.2}{$y$}} |
||
\put( 0,144){\sx{1.1}{$3$}} |
\put( 0,144){\sx{1.1}{$3$}} |
||
| Line 855: | Line 833: | ||
\put(346,-2){\sx{1.1}{$8$}} |
\put(346,-2){\sx{1.1}{$8$}} |
||
\put(362,-2){\sx{1.2}{$x$}} |
\put(362,-2){\sx{1.2}{$x$}} |
||
| − | \multiput(271,159)(-90,-21){4}{\sx{.8}{$u\!=\!0.4$}} |
||
| − | \multiput(271,147)(-90,-21){3}{\sx{.8}{$v\!=\!1.2$}} |
||
| − | \multiput(185,113)(90,21){2}{\sx{.8}{$v\!=\!1$}} |
||
| − | %\put(184,86){\sx{.8}{$v\!=\!0$}} |
||
| − | \multiput(184,60)(90,-21){2}{\sx{.8}{$v\!=\!-1$}} |
||
| − | \multiput(176,61)(89.4,-21){3}{\sx{.8}{\rot{42}{$u\!=\!0$}\ero}} |
||
| − | \ |
+ | \multiput(261,160)(-89,-20.8){4}{\sx{.8}{$u\!=\!0.4$}} |
| − | \multiput( |
+ | \multiput(251,147)(-90,-20.8){3}{\sx{.8}{$v\!=\!1.2$}} |
| − | \multiput( |
+ | \multiput(165,113)(90,20.8){3}{\sx{.8}{$v\!=\!1$}} |
| − | \ |
+ | %\put(164,86){\sx{.8}{$v\!=\!0$}} |
| + | \multiput(164,60)(90,-20.8){3}{\sx{.8}{$v\!=\!-1$}} |
||
| + | \multiput(156,61)(90,-20.8){3}{\sx{.8}{\rot{44}{$u\!=\!0$}\ero}} |
||
| + | \put(191,79){\sx{.8}{\rot{90}{$u\!=\!1$}\ero}} |
||
| + | \multiput(16,106)(90,20.8){4}{\sx{.8}{$v\!=\!1.4$}} |
||
| + | \multiput(16,64)(90,-20.8){3}{\sx{.8}{$v\!=\!-1.4$}} |
||
| + | \multiput(75,54)(90,-20.8){3}{\sx{.8}{$u\!=\!0.4$}} |
||
| + | |||
\end{picture}} |
\end{picture}} |
||
\sx{1.}{\begin{picture}(366,176) |
\sx{1.}{\begin{picture}(366,176) |
||
| − | \put( 6,-14){\includegraphics{ |
+ | \put( 6,-14){\includegraphics{analuxp01i}} |
| − | \put(35,153){\sx{1.}{$u\!+\!\mathrm i v \approx L\approx 0.3+1.3\mathrm i$}} |
+ | \put(35,153){\sx{1.}{$u\!+\!\mathrm i v \!\approx\! L\!\approx\! 0.3\!+\!1.3\mathrm i$}} |
| − | \put(33,13){\sx{1.}{$u\!+\!\mathrm i v \approx L^*\approx 0.3-1.3\mathrm i$}} |
+ | \put(33,13){\sx{1.}{$u\!+\!\mathrm i v \!\approx\! L^*\!\approx\! 0.3\!-\!1.3\mathrm i$}} |
| − | \put( |
+ | \put(11,151){\sx{2}{h}} |
\put( 0,162){\sx{1.2}{$y$}} |
\put( 0,162){\sx{1.2}{$y$}} |
||
\put( 0,144){\sx{1.1}{$3$}} |
\put( 0,144){\sx{1.1}{$3$}} |
||
| Line 891: | Line 870: | ||
\put(346,-2){\sx{1.1}{$8$}} |
\put(346,-2){\sx{1.1}{$8$}} |
||
\put(362,-2){\sx{1.2}{$x$}} |
\put(362,-2){\sx{1.2}{$x$}} |
||
| + | |||
| − | \multiput(271,159)(-90,-21){4}{\sx{.8}{$u\!=\!0.4$}} |
||
| − | \multiput( |
+ | \multiput(261,160)(-89,-20.8){4}{\sx{.8}{$u\!=\!0.4$}} |
| − | \multiput( |
+ | %\multiput(251,159)(-90,-20.8){4}{\sx{.8}{$u\!=\!0.4$}} |
| − | \ |
+ | \multiput(251,147)(-90,-20.8){3}{\sx{.8}{$v\!=\!1.2$}} |
| − | \multiput( |
+ | \multiput(165,113)(90,20.8){3}{\sx{.8}{$v\!=\!1$}} |
| − | \ |
+ | \put(164,86){\sx{.8}{$v\!=\!0$}} |
| − | \ |
+ | \multiput(164,60)(90,-20.8){3}{\sx{.8}{$v\!=\!-1$}} |
| − | \multiput( |
+ | \multiput(156,61)(90,-20.8){3}{\sx{.8}{\rot{44}{$u\!=\!0$}\ero}} |
| − | \ |
+ | \put(191,79){\sx{.8}{\rot{90}{$u\!=\!1$}\ero}} |
| − | \multiput( |
+ | \multiput(16,106)(90,20.8){4}{\sx{.8}{$v\!=\!1.4$}} |
| + | \multiput(16,64)(90,-20.8){3}{\sx{.8}{$v\!=\!-1.4$}} |
||
| + | \multiput(75,54)(90,-20.8){3}{\sx{.8}{$u\!=\!0.4$}} |
||
\end{picture}} |
\end{picture}} |
||
\end{document} |
\end{document} |
||
| + | </pre> |
||
| − | </nowiki></nomathjax></poem> |
||
==References== |
==References== |
||
| + | {{ref}} |
||
| + | {{fer}} |
||
| − | <references/> |
||
| + | ==Keywords== |
||
| + | «[[Exponential]]», |
||
| + | <b>«[[Natural tetration]]»</b>, |
||
| + | «[[Superfunction]]», |
||
| + | «[[Superfunctions]]», |
||
| + | «[[Tetration]]», |
||
| + | «[[Суперфункции]]», |
||
| + | |||
| + | [[Category:Approximation]] |
||
| + | [[Category:Book]] |
||
| + | [[Category:BookMap]] |
||
[[Category:Complex map]] |
[[Category:Complex map]] |
||
| − | [[Category:Fit]] |
||
| − | [[Category:Natural tetration]] |
||
| − | [[Category:Tetration]] |
||
[[Category:C++]] |
[[Category:C++]] |
||
| + | [[Category:History]] |
||
[[Category:Latex]] |
[[Category:Latex]] |
||
| − | [[Category: |
+ | [[Category:Michael Moldenhauer]] |
| + | [[Category:Natural tеtration]] |
||
| + | [[Category:Tetration]] |
||
Latest revision as of 08:29, 11 December 2025
Fig.14.4 from page 181 of book «Superfunctions»[1], 2020.
The same maps appear also in Рис.14.4 at page 180 of the Russian version «Суперфункции»[2], 2014.
Even earlier, these maps are published in Mathematic of Computation [3], 2009.
The figure shows the Complex maps of various approximations \(f\) of natural tetration with lines of constant logamplitude and constant phase:
\(\exp(u+\mathrm i v)=f(x\!+\!\mathrm i y)\)
This is historical figure; so, it is preserved "as is".
For the most of couplex maps in TORI, another representation is used,
the maps of function \(f\) are shown with
lines \( u=\mathrm{constant} \) and
lines \( v=\mathrm{constant} \);
\( u+\mathrm i v=f(x\!+\!\mathrm i y)\)
Namely for the natural tetration, such a transform just displace all the curves for unity.
Description of curves
e: Linear approximation by Gusmad
This is approximation, linear in the range \(-1 < \Re(z) \le 0\) suggested in 2006 by M.H.Hooshmand
\(u+\mathrm i v=\mathrm{uxp}(x\!+\!\mathrm i y)\)
\(\mathrm{uxp}(z)=\!\left\{\!\! \begin{array}{ccccc cc} \ln\!\big({\rm uxp}(z\!+\!1)\big)~&~{\rm at}~&~ \!&\! \!&\! \Re(z) \!&\! \le \!&\! -1 \\ z + 1 ~&{~\rm at}~&~ -1 \!&\! < \!&\! \Re(z) \!&\! \le \!&\! 0 \\ \exp\!\big({\rm uxp}(z\!-\!1)\big)~&{~\rm at}~&~ 0 \!&\! < \!&\! \Re(z) \!& \end{array} \right.\)
f: Approximation for moderate values of imaginary part of the argument
\(\mathrm {Fit}_{3}(z) = \left\{\!\! \begin{array}{ccccc cc} \ln\!\big({\rm Fit}_{3}(z\!+\!1)\big)~&~{~\rm at~}~&~ \!&\! \!&\! \Re(z) \!&\! \le \!&\! -1 \\ \mathrm{fit}_{3}(z) ~&~{~\rm at~}~& -1 \!&\! < \!&\! \Re(z) \!&\! \le \!&\! 0 \\ \exp\!\big({\rm Fit}_{3}(z\!-\!1)\big)~&~{~\rm at~}~&~ 0 \!&\! < \!&\! \Re(z) \!& \end{array} \right. \)
where
\(\displaystyle \mathrm{fit}_3(z) \!=\! 0.6\!~\mathrm{fit}_{2}(z)+0.4\!~\ln\big( \mathrm{fit}_{2}(z+1)\big) \)
\(\displaystyle \mathrm{fit}_2(z) \!=\! \ln(2\!+\!z) + (1\!+\!z)\left( 1 + \frac{z}{2}\exp\!\Big((z\!-\!1)s_2(z)\Big) \Big(\!\mathrm e\! -2\! +\! \ln\frac{4}{3} \Big) - \ln 2 \right)\)
\( s_2(z) = \exp\!\Big(\exp(z-2.51)\Big)-0.6+0.08(z\!+\!1) \)
g. Approximation for large values of imaginary part of the argument
In the upper half plane, say, \(y>1/2\), the \(\mathrm{fit}_6\) is shown,
\(u+\mathrm i v =\mathrm{fit}_6(x\!+\!\mathrm i y)\)
where
\(\mathrm{fit}_6(z) = \left\{ \begin{array} ~ L+\exp(kz+r) ~, ~ \Re(z)<-8\\ \exp\Big(\mathrm{fit}_6(z\!-\!1)\Big)~,~ \Re(z)\ge -8 \end{array} \right.\)
and
\(u+\mathrm i v =\mathrm{fit}_6(x\!-\!\mathrm i y)^*\)
in the lower half plane, say, \(y<-1/2\).
The strip of intermediate values \(|y|<1/2\) is left empty.
In formula above, \(L\approx 0.31813150520476413 + 1.3372357014306895 \,\mathrm i\) is fixed point of logarithm, \(L=\ln(L)\). For Natural tetration, the increment \(k=L\). Parameter \(r\) provides the match of the two asymptotics. It is fundamental mathematical constant; \(r \approx 1.075820830781 - 0.9466419207254 \, \mathrm i\) . This precision seems to be sufficient for the applications; however, the improvement of the precision may be subject of the additional research.
h. Precise approximation.
The precise approximation of the natural tetration, with 14 decimal digits, is described at [3][5],
\(u+\mathrm i v=\mathrm{tet}(x\!+\!\mathrm i y)\)
However, looking at the picture. it is not possible to guess, which algorithm is used, the direct implementation of the Cauchi integral [3]
or the fast implementation by [5], as the deviation is of order of \(10^{-14}\); the precision greatly exceeds the needs of the graphical illustration of the function.
Similar images and motivation
The similar image appears as Figure 1 in the First publication about real-holomorphic natural tetration [3].
The reason of the detailed description of so simple image is historic. Many colleagues are interested in history of physics and mathematics. They asked me, how did I guess the asymptotic behavior of the natural tetration at \(\mathrm i \infty\). The last request was in 2013 by Michael Moldenhauer [6].
Functions \(\mathrm{fit}_2\) and \(\mathrm{fit}_3\) above provide the key. I used to check many fits. The \(\mathrm{fit}_2\) and \(\mathrm{Fit}_3\) happened best to see the asymtotics.
In order not to repeat the same explanation again and again, I load the generators and, in particular, the code that includes \(\mathrm{fit}_3\) above. One can begin with \(\mathrm{fit}_2\) and see, that the simple fit can provide the camera-ready pictures at least in vicinity of the real axis. This fit is already sufficient to see the asymptotics with naked eyes. The \(\mathrm{fit}_3\) and \(\mathrm{Fit}_6\) were arranged to confirm the guess: the better is the approximation of tetration, the closer does it approach to the asymptotics.
After to postulate the asymptotic behaviour of the tetration, it is not difficult to construct the algorithm for the precise evaluation. The Cauchi integral along the contour \(|\Re(z)|=1\) is simple straightforward way; perhaps, there exist other, even more efficient algorithms.
C++ generators of curves. picture e, the top
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
#include <complex.h>
#define z_type complex<double>
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
//#include "uxp.cin"
//#include "advacon.cin"
#include "conto.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
//z_type Zo=z_type(.31813150520476413, 1.3372357014306895);
//z_type Zc=z_type(.31813150520476413,-1.3372357014306895);
int K=200,K1=K+1;
DB A=10.; DB dy=2*A/K; printf("dy=%6.3f",dy);
#define Y(k) (dy*(k-K/2))
printf("y_0=%6.3f y_K=%6.3f ",Y(0), Y(K));
int M=180,M1=M+1;
int N=50,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
// z_type tm,tp,F[M1*N1];
z_type tm,tp,F[9681];
//char v[11000]; // v is working array
// printf("Output fig01a.eps\n");
FILE *o;o=fopen("analuxp01e.eps","w");ado(o,364,84);
fprintf(o,"182 42 translate\n 20 20 scale\n");
//DB sy=4.3/sinh(.04*N/2.);
DB sy=2/sinh(.04*N/2.);
DO(m,M1) X[m]=-9.+.1*(m+.5);
DO(n,N1) Y[n]=sy*sinh(.04*(n+.5-N/2));
//for(m=-10;m<9;m++) {M(m,-4)L(m,4)}
for(m=-9;m<10;m++) {M(m,-2)L(m,2)}
for(n=-2;n<3;n++) {M(-9,n)L(9,n)} fprintf(o,".006 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){
g[m*N1+n]=9999;
f[m*N1+n]=9999;
}
//for(m=96;m<106;m++){x=X[m];
//for(m=95;m<106;m++){x=X[m];
for(m=80;m<90;m++){x=X[m];
DO(n,N1){y=Y[n]; z=z_type(x,y);
// c=z+1.;
F[m*N1+n]=z+1.; p=Re(z); q=Im(z);
// if(p>-999 && p<999) g[m*N1+n]=p;
// if(q>-999 && q<999) f[m*N1+n]=q;
}
}
for(m=90;m<M1;m++)
DO(n,N1)
{
F[m*N1+n] = exp( F[(m-10)*N1+n] );
}
for(m=79;m>=0;m--)
DO(n,N1)
{
F[m*N1+n] = log( F[(m+10)*N1+n] );
}
DO(m,M1)
DO(n,N1){
c=F[m*N1+n]; p=Re(c); q=Im(c);
if(p>-99 && p<99) g[m*N1+n]=p;
if(q>-99 && q<99) f[m*N1+n]=q;
}
p=1;
conto(o,f,w,v,X,Y,M,N, (-4 ),-5,5); fprintf(o,".04 W 1 0 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( -3 ),-5,5); fprintf(o,".04 W 1 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-3.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (-2. ),-2 ,2); fprintf(o,".03 W 1 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-2.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (-1. ),-2 ,2); fprintf(o,".03 W 1 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-1.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (0. ),-5,5); fprintf(o,".02 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( .1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( 1. ),-2 ,2); fprintf(o,".03 W 0 0 1 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 1.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( 2. ),-2 ,2); fprintf(o,".03 W 0 0 1 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 2.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( 3 ),-5,5); fprintf(o,".04 W 0 0 1 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( 4 ),-5,5); fprintf(o,".04 W 0 0 1 RGB S\n");
conto(o,g,w,v,X,Y,M,N, (-2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-2.+.1*n),-p,p); fprintf(o,".01 W 1 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, (-1. ),-2,2); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-1.+.1*n),-p,p); fprintf(o,".01 W 1 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, (0. ),-3,3); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, ( .1*n),-p,p); fprintf(o,".01 W 0 0 1 RGB S\n");
conto(o,g,w,v,X,Y,M,N, ( 1. ),-2,2); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, ( 1.+.1*n),-p,p); fprintf(o,".01 W 0 0 1 RGB S\n");
conto(o,g,w,v,X,Y,M,N, ( 2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, ( 3. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, ( 4. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
for(m=-10;m<9;m++) {M(m,-2.)L(m,2.)}
M(-10,0)L(-2,0)fprintf(o,".06 W 1 0 1 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf analuxp01e.eps");
system( "open analuxp01e.pdf");
getchar();
system("killall Preview");
}
C++ generators of curves. Picture f
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
#include <complex.h>
#define z_type complex<double>
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "analuxpf3c.cin"
#include "conto.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
//z_type Zo=z_type(.31813150520476413, 1.3372357014306895);
//z_type Zc=z_type(.31813150520476413,-1.3372357014306895);
int K=200,K1=K+1;
DB A=10.; DB dy=2*A/K; printf("dy=%6.3f",dy);
#define Y(k) (dy*(k-K/2))
printf("y_0=%6.3f y_K=%6.3f ",Y(0), Y(K));
int M=179,M1=M+1;
int N=51,N1=N+1;
// z_type tm,tp,F[M1*N1]; does not work
z_type tm,tp,F[180*52];
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
// printf("Output fig01b.eps\n");
FILE *o;o=fopen("analuxp01f.eps","w");ado(o,364,84);
fprintf(o,"182 42 translate\n 20 20 scale\n");
//DB sy=4.3/sinh(.04*N/2.);
DB sy=2/sinh(.04*N/2.);
DO(m,M1) X[m]=-9.+.1*(m-.5);
DO(n,N1) Y[n]=sy*sinh(.04*(n-.5-N/2));
//for(m=-10;m<9;m++) {M(m,-4)L(m,4)}
for(m=-9;m<10;m++) {M(m,-2)L(m,2)}
for(n=-2;n<3;n++) {M(-9,n)L(9,n)} fprintf(o,".006 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){
g[m*N1+n]=9999;
f[m*N1+n]=9999;
}
//for(m=96;m<106;m++){x=X[m];
//for(m=95;m<106;m++){x=X[m];
for(m=81;m<91;m++){x=X[m];
DO(n,N1){y=Y[n]; z=z_type(x,y);
// c=z+1.;
c=f3(z);
F[m*N1+n]=c; p=Re(c); q=Im(c);
// if(p>-999 && p<999) g[m*N1+n]=p;
// if(q>-999 && q<999) f[m*N1+n]=q;
}
}
for(m=91;m<M1;m++)
DO(n,N1)
{
F[m*N1+n] = exp( F[(m-10)*N1+n] );
}
for(m=80;m>=0;m--)
DO(n,N1)
{
F[m*N1+n] = log( F[(m+10)*N1+n] );
}
DO(m,M1)
DO(n,N1){
c=F[m*N1+n]; p=Re(c); q=Im(c);
if(p>-999 && p<999) g[m*N1+n]=p;
if(q>-999 && q<999) f[m*N1+n]=q;
}
p=.8;
conto(o,f,w,v,X,Y,M,N, ( -4 ),-4, 4); fprintf(o,".04 W 1 0 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( -3 ),-4, 4); fprintf(o,".04 W 1 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-3.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (-2. ),-2 ,2); fprintf(o,".03 W 1 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-2.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (-1. ),-2 ,2); fprintf(o,".03 W 1 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-1.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (0. ),-4, 4); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( .1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( 1. ),-2 ,2); fprintf(o,".03 W 0 0 1 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 1.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( 2. ),-2 ,2); fprintf(o,".03 W 0 0 1 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 2.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( 3 ),-4, 4); fprintf(o,".04 W 0 0 1 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( 4 ),-4, 4); fprintf(o,".04 W 0 0 1 RGB S\n");
conto(o,g,w,v,X,Y,M,N, (-2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-2.+.1*n),-p,p); fprintf(o,".01 W 1 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, (-1. ),-1,1); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-1.+.1*n),-p,p); fprintf(o,".01 W 1 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, (0. ),-4,4); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, ( .1*n),-p,p); fprintf(o,".01 W 0 0 1 RGB S\n");
conto(o,g,w,v,X,Y,M,N, ( 1. ),-1,1); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, ( 1.+.1*n),-p,p); fprintf(o,".01 W 0 0 1 RGB S\n");
conto(o,g,w,v,X,Y,M,N, ( 2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, ( 3. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, ( 4. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
M(-10,0)L(-2,0)fprintf(o,".04 W 1 0 1 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf analuxp01f.eps");
system( "open analuxp01f.eps");
getchar();
system("killall Preview");
}
C++ generators of curves. Picture g
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
#include <complex.h>
#define z_type complex<double>
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
//#include "f4c.cin"
#include "conto.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
z_type Zo=z_type(.31813150520476413, 1.3372357014306895);
z_type Zc=z_type(.31813150520476413,-1.3372357014306895);
z_type T =2*M_PI/Zo;
//z_type r=z_type(1.06,-.96);
z_type r=z_type(1.075820830781, - 0.9466419207254);
int K=200,K1=K+1;
DB A=10.; DB dy=2*A/K; printf("dy=%6.3f",dy);
#define Y(k) (dy*(k-K/2))
printf("y_0=%6.3f y_K=%6.3f ",Y(0), Y(K));
int M=180,M1=M+1;
int N=80,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
//z_type tm,tp,F[M1*N1];
z_type tm,tp,F[181*81];
// printf("Output fig01c.eps\n");
FILE *o;o=fopen("analuxp01g.eps","w");ado(o,364,204);
fprintf(o,"182 102 translate\n 20 20 scale\n");
DB sy=4.3/sinh(.04*N/2.);
DO(m,M1) X[m]=-9+.1*m;
DO(n,N1) Y[n]=sy*sinh(.04*(n-N/2));
for(m=-9;m<10;m++) {M(m,-4)L(m,4)}
for(n=-4;n<5;n++) {M( -9,n)L(9,n)} fprintf(o,".006 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){
g[m*N1+n]=9999;
f[m*N1+n]=9999;
}
for(m=0;m<10;m++){int m1; x=X[m];
DO(n,N1){y=Y[n]; z=z_type(x,y); //c=F4(z-1.);
if(y>.3) c=Zo+exp(Zo*(z)+r);
else
if(y<-.3) c=Zc+exp(Zc*(z)+conj(r));
//z_type(0.318131505204764, 1.337235701430689)
else goto ski;
// int m1;
for(m1=m;m1<M1;){ F[m1*N1+n]=c; p=Re(c); q=Im(c);
if(p>-999 && p<999) g[m1*N1+n]=p;
if(q>-999 && q<999) f[m1*N1+n]=q;
c=exp(c); m1+=10;
}
ski:;
}
}
/*
DO(m,M1)
DO(n,N1){
c=F[m*N1+n]; p=Re(c); q=Im(c);
if(p>-999 && p<999) g[m*N1+n]=p;
if(q>-999 && q<999) f[m*N1+n]=q;
}
*/
p=2;
conto(o,f,w,v,X,Y,M,N, ( -4. ),-999,999); fprintf(o,".04 W 1 0 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( -3. ),-999,999); fprintf(o,".04 W 1 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-3.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (-2. ),-9 ,9); fprintf(o,".03 W 1 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-2.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (-1. ),-9 ,9); fprintf(o,".03 W 1 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-1.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (0. ),-999,999); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( .1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( 1. ),-9 ,9); fprintf(o,".03 W 0 0 1 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 1.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( 2. ),-9 ,9); fprintf(o,".03 W 0 0 1 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 2.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( 3. ),-999,999); fprintf(o,".04 W 0 0 1 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( 4. ),-999,999); fprintf(o,".04 W 0 0 1 RGB S\n");
conto(o,g,w,v,X,Y,M,N, (-2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-2.+.1*n),-p,p); fprintf(o,".01 W 1 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, (-1. ),-3,3); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-1.+.1*n),-p,p); fprintf(o,".01 W 1 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, (0. ),-999,999); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, ( .1*n),-p,p); fprintf(o,".01 W 0 0 1 RGB S\n");
conto(o,g,w,v,X,Y,M,N, ( 1. ),-3,3); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, ( 1.+.1*n),-p,p); fprintf(o,".01 W 0 0 1 RGB S\n");
conto(o,g,w,v,X,Y,M,N, ( 2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, ( 3. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, ( 4. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
//M(-10,0)L(-2,0)fprintf(o,".04 W 1 0 1 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
//system( "ggv fig01c.eps");
system("epstopdf analuxp01g.eps");
system( "open analuxp01g.eps");
getchar();
system("killall Preview");
}
C++ generators of curves. Picture h
// file analuxpf4c.cin
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
#include <complex.h>
#define z_type complex<double>
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "analuxpf4c.cin"
#include "conto.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
z_type Zo=z_type(.31813150520476413, 1.3372357014306895);
z_type Zc=z_type(.31813150520476413,-1.3372357014306895);
int K=200,K1=K+1;
DB A=10.; DB dy=2*A/K; printf("dy=%6.3f",dy);
#define Y(k) (dy*(k-K/2))
printf("y_0=%6.3f y_K=%6.3f ",Y(0), Y(K));
int M=180,M1=M+1;
int N=80,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
//z_type tm,tp,F[M1*N1];
z_type tm,tp,F[181*81];
char v[M1*N1]; // v is working array
// printf("Output fig01d.eps\n");
FILE *o;o=fopen("analuxp01h.eps","w");ado(o,364,204);
fprintf(o,"182 102 translate\n 20 20 scale\n");
DB sy=4.3/sinh(.04*N/2.);
DO(m,M1) X[m]=-9.+.1*m;
DO(n,N1) Y[n]=sy*sinh(.04*(n-N/2));
for(m=-9;m<10;m++) {M(m,-4)L(m,4)}
for(n=-4;n<5;n++) {M( -9,n)L(9,n)} fprintf(o,".006 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){
g[m*N1+n]=9999;
f[m*N1+n]=9999;
}
//for(m=96;m<106;m++){x=X[m];
//for(m=90;m<100;m++){x=X[m];
for(m=86;m<96;m++){x=X[m];
DO(n,N1){y=Y[n]; z=z_type(x,y);
c=F4(z);
F[m*N1+n]=c; p=Re(c); q=Im(c);
if(p>-999 && p<999) g[m*N1+n]=p;
if(q>-999 && q<999) f[m*N1+n]=q;
}
}
for(m=96;m<M1;m++)
DO(n,N1)
{
F[m*N1+n] = exp( F[(m-10)*N1+n] );
}
for(m=85;m>=0;m--)
DO(n,N1)
{
F[m*N1+n] = log( F[(m+10)*N1+n] );
}
DO(m,M1)
DO(n,N1){
c=F[m*N1+n]; p=Re(c); q=Im(c);
if(p>-999 && p<999) g[m*N1+n]=p;
if(q>-999 && q<999) f[m*N1+n]=q;
}
p=2;
conto(o,f,w,v,X,Y,M,N, (-4 ),-999,999); fprintf(o,".04 W 1 0 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( -3 ),-999,999); fprintf(o,".04 W 1 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-3.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (-2. ),-9 ,9); fprintf(o,".03 W 1 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-2.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (-1. ),-9 ,9); fprintf(o,".03 W 1 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-1.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (0. ),-999,999); fprintf(o,".02 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( .1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( 1. ),-9 ,9); fprintf(o,".03 W 0 0 1 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 1.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( 2. ),-9 ,9); fprintf(o,".03 W 0 0 1 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 2.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( 3 ),-99,99); fprintf(o,".04 W 0 0 1 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( 4 ),-99,99); fprintf(o,".04 W 0 0 1 RGB S\n");
// conto(o,f,w,v,X,Y,M,N, ( M_PI ),-99,99); fprintf(o,".04 W 1 0 1 RGB S\n");
// conto(o,f,w,v,X,Y,M,N, (3*M_PI ),-99,99); fprintf(o,".04 W 1 0 1 RGB S\n");
conto(o,g,w,v,X,Y,M,N, (-2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-2.+.1*n),-p,p); fprintf(o,".01 W 1 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, (-1. ),-3,3); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-1.+.1*n),-p,p); fprintf(o,".01 W 1 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, (0. ),-99,99); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, ( .1*n),-p,p); fprintf(o,".01 W 0 0 1 RGB S\n");
conto(o,g,w,v,X,Y,M,N, ( 1. ),-3,3); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, ( 1.+.1*n),-p,p); fprintf(o,".01 W 0 0 1 RGB S\n");
conto(o,g,w,v,X,Y,M,N, ( 2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, ( 3. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, ( 4. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
M(-10,0)L(-2,0)fprintf(o,".04 W 1 0 1 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
//system( "ggv fig01d.eps");
system("epstopdf analuxp01h.eps");
system( "open analuxp01h.eps");
getchar();
system("killall Preview");
}
C++ generators of curves. Picture i
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
#include <complex.h>
#define z_type complex<double>
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
//#include "analuxpf4c.cin"
#include "fsexp.cin"
#include "conto.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
z_type Zo=z_type(.31813150520476413, 1.3372357014306895);
z_type Zc=z_type(.31813150520476413,-1.3372357014306895);
int K=200,K1=K+1;
DB A=10.; DB dy=2*A/K; printf("dy=%6.3f",dy);
#define Y(k) (dy*(k-K/2))
printf("y_0=%6.3f y_K=%6.3f ",Y(0), Y(K));
int M=180,M1=M+1;
int N=160,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
//z_type tm,tp,F[M1*N1];
z_type tm,tp,F[181*161];
char v[M1*N1]; // v is working array
// printf("Output fig01d.eps\n");
FILE *o;o=fopen("analuxp01i.eps","w");ado(o,364,204);
fprintf(o,"182 102 translate\n 20 20 scale\n");
DB sy=4.3/sinh(.02*N/2.);
DO(m,M1) X[m]=-9.+.1*m;
DO(n,N1) Y[n]=sy*sinh(.02*(n-.5-N/2));
for(m=-9;m<10;m++) {M(m,-4)L(m,4)}
for(n=-4;n<5;n++) {M( -9,n)L(9,n)} fprintf(o,".006 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){
g[m*N1+n]=9999;
f[m*N1+n]=9999;
}
//for(m=96;m<106;m++){x=X[m];
//for(m=90;m<100;m++){x=X[m];
for(m=86;m<96;m++){x=X[m];
DO(n,N1){y=Y[n]; z=z_type(x,y);
//c=F4(z);
c=FSEXP(z);
F[m*N1+n]=c; p=Re(c); q=Im(c);
if(p>-999 && p<999) g[m*N1+n]=p;
if(q>-999 && q<999) f[m*N1+n]=q;
}
}
for(m=96;m<M1;m++)
DO(n,N1)
{
F[m*N1+n] = exp( F[(m-10)*N1+n] );
}
for(m=85;m>=0;m--)
DO(n,N1)
{
F[m*N1+n] = log( F[(m+10)*N1+n] );
}
DO(m,M1)
DO(n,N1){
c=F[m*N1+n]; p=Re(c); q=Im(c);
if(p>-999 && p<999) g[m*N1+n]=p;
if(q>-999 && q<999) f[m*N1+n]=q;
}
p=2;
conto(o,f,w,v,X,Y,M,N, (-4 ),-999,999); fprintf(o,".04 W 1 0 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( -3 ),-999,999); fprintf(o,".04 W 1 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-3.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (-2. ),-9 ,9); fprintf(o,".03 W 1 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-2.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (-1. ),-9 ,9); fprintf(o,".03 W 1 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-1.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (0. ),-999,999); fprintf(o,".02 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( .1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( 1. ),-9 ,9); fprintf(o,".03 W 0 0 1 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 1.+.1*n),-p ,p); fprintf(o,".01 W 0 .6 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( 2. ),-9 ,9); fprintf(o,".03 W 0 0 1 RGB S\n");
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 2.+.1*n),-p, p); fprintf(o,".01 W 0 .6 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( 3 ),-99,99); fprintf(o,".04 W 0 0 1 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( 4 ),-99,99); fprintf(o,".04 W 0 0 1 RGB S\n");
// conto(o,f,w,v,X,Y,M,N, ( M_PI ),-99,99); fprintf(o,".04 W 1 0 1 RGB S\n");
// conto(o,f,w,v,X,Y,M,N, (3*M_PI ),-99,99); fprintf(o,".04 W 1 0 1 RGB S\n");
conto(o,g,w,v,X,Y,M,N, (-2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-2.+.1*n),-p,p); fprintf(o,".01 W 1 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, (-1. ),-3,3); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-1.+.1*n),-p,p); fprintf(o,".01 W 1 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, (0. ),-99,99); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, ( .1*n),-p,p); fprintf(o,".01 W 0 0 1 RGB S\n");
conto(o,g,w,v,X,Y,M,N, ( 1. ),-3,3); fprintf(o,".03 W 0 0 0 RGB S\n");
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, ( 1.+.1*n),-p,p); fprintf(o,".01 W 0 0 1 RGB S\n");
conto(o,g,w,v,X,Y,M,N, ( 2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, ( 3. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, ( 4. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
M(-10,0)L(-2,0)fprintf(o,".04 W 1 0 1 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
//system( "ggv fig01d.eps");
system("epstopdf analuxp01i.eps");
system( "open analuxp01i.eps");
getchar();
system("killall Preview");
}
Latex generator of labels
\documentclass[12pt]{article}
\usepackage{geometry}
\usepackage{graphics}
\usepackage{rotating}
\paperwidth 375px
\paperheight 542px
\textwidth 500pt
\textheight 900pt
\topmargin -100pt
\oddsidemargin -66pt
\parindent 0pt
\pagestyle{empty}
\newcommand \sx {\scalebox}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\begin{document}
\sx{1.}{\begin{picture}(370,80)
%\put(5,5){\includegraphics{fig01a}}
\put(6,6){\includegraphics{analuxp01e}}
\put(11,71){\sx{2}{e}}
\put( 0,82){\sx{1.2}{$y$}}
\put( 0,63){\sx{1.1}{$1$}}
\put( 0,43){\sx{1.1}{$0$}}
\put(-9,23){\sx{1.1}{$-1$}}
\put( 18,-2){\sx{1.1}{$-8$}}
\put( 58,-2){\sx{1.1}{$-6$}}
\put(98,-2){\sx{1.1}{$-4$}}
\put(138,-2){\sx{1.1}{$-2$}}
\put(186,-2){\sx{1.1}{$0$}}
\put(226,-2){\sx{1.1}{$2$}}
\put(266,-2){\sx{1.1}{$4$}}
\put(306,-2){\sx{1.1}{$6$}}
\put(346,-2){\sx{1.1}{$8$}}
\put(362,-2){\sx{1.2}{$x$}}
\put(-4,36){\sx{.8}{$u\!=\!0.4$}}
\put(156,56){\sx{.8}{\rot{56}{$v\!=\!1$}\ero}}
\put(152,24){\sx{.8}{\rot{32}{$u\!=\!0$}\ero}}
\put(21,63){\sx{.8}{$v\!=\!1.4$}}
\put(77,52){\sx{.8}{$v\!=\!1$}}
%\put(169,85.6){\sx{.8}{\rot{0.}{$v\!=\!2$}\ero}}
\put(169,65.6){\sx{.8}{\rot{0.}{$v\!=\!1$}\ero}}
\put(161,45.6){\sx{.8}{\rot{0.}{$v\!=\!0$}\ero}}
%\put(170,25){\sx{.8}{\rot{0.}{$v\!=\!-1$}\ero}}
\put(192,38){\sx{.8}{\rot{90}{$u\!=\!1$}\ero}}
\put(206,38){\sx{.8}{\rot{90}{$u\!=\!2$}\ero}}
\end{picture}}
\sx{1.}{\begin{picture}(370,96)
\put( 6,6){\includegraphics{analuxp01f}}
\put(11,71){\sx{2}{f}}
\put( 0,82){\sx{1.2}{$y$}}
\put( 0,63){\sx{1.1}{$1$}}
\put( 0,43){\sx{1.1}{$0$}}
\put(-9,23){\sx{1.1}{$-1$}}
\put( 18,-2){\sx{1.1}{$-8$}}
\put( 58,-2){\sx{1.1}{$-6$}}
\put( 98,-2){\sx{1.1}{$-4$}}
\put(138,-2){\sx{1.1}{$-2$}}
\put(186,-2){\sx{1.1}{$0$}}
\put(226,-2){\sx{1.1}{$2$}}
\put(266,-2){\sx{1.1}{$4$}}
\put(306,-2){\sx{1.1}{$6$}}
\put(346,-2){\sx{1.1}{$8$}}
\put(362,-2){\sx{1.2}{$x$}}
\put(-4,36){\sx{.8}{$u\!=\!0.4$}}
\multiput(20,66)(90,21){2}{\sx{.8}{$v\!=\!1.4$}}
\multiput(73,77)(-90,-21){1}{\sx{.8}{$u\!=\!0.4$}}
\multiput(163,86)(-90,-21){2}{\sx{.8}{$v\!=\!1.2$}}
\multiput(165,73)(-90,-21){2}{\sx{.8}{$v\!=\!1$}}
\put(164,46){\sx{.8}{$v\!=\!0$}}
\put(164,20){\sx{.8}{$v\!=\!-1$}}
\multiput(157,21)(90,-20.6){2}{\sx{.8}{\rot{46}{$u\!=\!0$}\ero}}
\put(191,39){\sx{.8}{\rot{90}{$u\!=\!1$}\ero}}
\multiput(74,13)(90,-21){1}{\sx{.8}{$u\!=\!0.4$}}
\multiput(18,26)(90,-21){1}{\sx{.8}{$v\!=\!-1.4$}}
\end{picture}}
\sx{1.}{\begin{picture}(366,176)
\put( 6,-14){\includegraphics{analuxp01g}}
\put(35,153){\sx{1.}{$u\!+\!\mathrm i v \!\approx\! L\!\approx\! 0.3\!+\!1.3\mathrm i$}}
\put(33,13){\sx{1.}{$u\!+\!\mathrm i v \!\approx\! L^*\!\approx\! 0.3\!-\!1.3\mathrm i$}}
\put(11,152){\sx{2}{g}}
\put( 0,164){\sx{1.2}{$y$}}
\put( 0,144){\sx{1.1}{$3$}}
\put( 0,124){\sx{1.1}{$2$}}
\put( 0,104){\sx{1.1}{$1$}}
\put( 0, 84){\sx{1.1}{$0$}}
\put(-9, 64){\sx{1.1}{$-1$}}
\put(-9, 44){\sx{1.1}{$-2$}}
\put(-9, 24){\sx{1.1}{$-3$}}
\put( 18,-2){\sx{1.1}{$-8$}}
\put( 58,-2){\sx{1.1}{$-6$}}
\put( 98,-2){\sx{1.1}{$-4$}}
\put(138,-2){\sx{1.1}{$-2$}}
\put(186,-2){\sx{1.1}{$0$}}
\put(226,-2){\sx{1.1}{$2$}}
\put(266,-2){\sx{1.1}{$4$}}
\put(306,-2){\sx{1.1}{$6$}}
\put(346,-2){\sx{1.1}{$8$}}
\put(362,-2){\sx{1.2}{$x$}}
\multiput(261,160)(-89,-20.8){4}{\sx{.8}{$u\!=\!0.4$}}
\multiput(251,147)(-90,-20.8){3}{\sx{.8}{$v\!=\!1.2$}}
\multiput(165,113)(90,20.8){3}{\sx{.8}{$v\!=\!1$}}
%\put(164,86){\sx{.8}{$v\!=\!0$}}
\multiput(164,60)(90,-20.8){3}{\sx{.8}{$v\!=\!-1$}}
\multiput(156,61)(90,-20.8){3}{\sx{.8}{\rot{44}{$u\!=\!0$}\ero}}
\put(191,79){\sx{.8}{\rot{90}{$u\!=\!1$}\ero}}
\multiput(16,106)(90,20.8){4}{\sx{.8}{$v\!=\!1.4$}}
\multiput(16,64)(90,-20.8){3}{\sx{.8}{$v\!=\!-1.4$}}
\multiput(75,54)(90,-20.8){3}{\sx{.8}{$u\!=\!0.4$}}
\end{picture}}
\sx{1.}{\begin{picture}(366,176)
\put( 6,-14){\includegraphics{analuxp01i}}
\put(35,153){\sx{1.}{$u\!+\!\mathrm i v \!\approx\! L\!\approx\! 0.3\!+\!1.3\mathrm i$}}
\put(33,13){\sx{1.}{$u\!+\!\mathrm i v \!\approx\! L^*\!\approx\! 0.3\!-\!1.3\mathrm i$}}
\put(11,151){\sx{2}{h}}
\put( 0,162){\sx{1.2}{$y$}}
\put( 0,144){\sx{1.1}{$3$}}
\put( 0,124){\sx{1.1}{$2$}}
\put( 0,104){\sx{1.1}{$1$}}
\put( 0, 84){\sx{1.1}{$0$}}
\put(-9, 64){\sx{1.1}{$-1$}}
\put(-9, 44){\sx{1.1}{$-2$}}
\put(-9, 24){\sx{1.1}{$-3$}}
\put( 18,-2){\sx{1.1}{$-8$}}
\put( 58,-2){\sx{1.1}{$-6$}}
\put( 98,-2){\sx{1.1}{$-4$}}
\put(138,-2){\sx{1.1}{$-2$}}
\put(186,-2){\sx{1.1}{$0$}}
\put(226,-2){\sx{1.1}{$2$}}
\put(266,-2){\sx{1.1}{$4$}}
\put(306,-2){\sx{1.1}{$6$}}
\put(346,-2){\sx{1.1}{$8$}}
\put(362,-2){\sx{1.2}{$x$}}
\multiput(261,160)(-89,-20.8){4}{\sx{.8}{$u\!=\!0.4$}}
%\multiput(251,159)(-90,-20.8){4}{\sx{.8}{$u\!=\!0.4$}}
\multiput(251,147)(-90,-20.8){3}{\sx{.8}{$v\!=\!1.2$}}
\multiput(165,113)(90,20.8){3}{\sx{.8}{$v\!=\!1$}}
\put(164,86){\sx{.8}{$v\!=\!0$}}
\multiput(164,60)(90,-20.8){3}{\sx{.8}{$v\!=\!-1$}}
\multiput(156,61)(90,-20.8){3}{\sx{.8}{\rot{44}{$u\!=\!0$}\ero}}
\put(191,79){\sx{.8}{\rot{90}{$u\!=\!1$}\ero}}
\multiput(16,106)(90,20.8){4}{\sx{.8}{$v\!=\!1.4$}}
\multiput(16,64)(90,-20.8){3}{\sx{.8}{$v\!=\!-1.4$}}
\multiput(75,54)(90,-20.8){3}{\sx{.8}{$u\!=\!0.4$}}
\end{picture}}
\end{document}
References
- ↑
https://www.amazon.co.jp/-/en/Dmitrii-Kouznetsov/dp/6202672862
https://www.morebooks.de/shop-ui/shop/product/978-620-2-67286-3
https://mizugadro.mydns.jp/BOOK/458.pdf Dmitrii Kouznetsov. Superfunctions. Lambert Academic Piblishing, 2020. Page 181, Fig.14.4. - ↑ https://mizugadro.mydns.jp/BOOK/2020.pdf Дмитрий Кузнецов. Суперфункции. Lambert Academic Piblishing, 2014. Page 180, Fig.14.4.
- ↑ 3.0 3.1 3.2 3.3
http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html
Preprint: http://www.ils.uec.ac.jp/~dima/PAPERS/2009analuxpRepri.pdf D.Kouznetsov. Analytic solution of F(z+1)=exp(F(z)) in complex z-plane. Mathematics of Computation, v.78 (2009), 1647-1670. - ↑ 3. M.H.Hooshmand. ”Ultra power and ultra exponential functions”. Integral Transforms and Special Functions 17 (8), 549-558 (2006)
- ↑ 5.0 5.1
http://mizugadro.mydns.jp/PAPERS/2010vladie.pdf English version
http://mizugadro.mydns.jp/PAPERS/2009vladie.pdf Preprint, English version
http://mizugadro.mydns.jp/PAPERS/2009vladir.pdf Preprint, Russian version
D.Kouznetsov. Superexponential as special function. Vladikavkaz Mathematical Journal, 2010, v.12, issue 2, p.31-45. - ↑ Michael Moldenhauer. Question about tetration method. Private communication, Sat, 9 Nov 2013 01:11:53 -0800 (PST). .. how did you come up with the high-quality initial approximation "fit_3" mentioned in your paper about the tetrational function?
Keywords
«Exponential», «Natural tetration», «Superfunction», «Superfunctions», «Tetration»,
«Суперфункции»,
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 06:10, 1 December 2018 | 2,083 × 3,011 (1.67 MB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
There are no pages that use this file.