Difference between revisions of "File:Penplot.jpg"
(Importing image file) |
|||
Line 1: | Line 1: | ||
+ | [[Explicit plot]] of natural [[pentation]], |
||
− | Importing image file |
||
+ | |||
+ | $y=\mathrm{pen}(x)$ is shown with thick black line. |
||
+ | |||
+ | ==Other lines== |
||
+ | The thin red line shows it asymptotic level $L\approx -1.8503545290271812$ is smallest real fixed point of [[natural tetration]]. |
||
+ | |||
+ | |||
+ | The thin blue line shows the asymptotic |
||
+ | |||
+ | $ y=L+\exp(k(x+x_1))$ |
||
+ | |||
+ | where $k\approx 1.86573322821$ |
||
+ | |||
+ | and $x_1 \approx 2.24817451898$ |
||
+ | |||
+ | |||
+ | The thin green line shown the deviation from the linear approximation |
||
+ | |||
+ | $\mathrm{linear}(x)=1+x$ |
||
+ | |||
+ | The deviation is denoted as $~\delta(x)=\mathrm{pen}(x)-\mathrm{linear}(x)$ |
||
+ | |||
+ | In the range $-2.1\!<\!x\!<\!1.1$, the deviation is small, the linear approximation provides 2 correct significant digits. In order to make the deviation visible, it is scaled with factor 10, so, $y=10\delta(x)$ is plotted. |
||
+ | |||
+ | ==Description of natural pentation== |
||
+ | |||
+ | Natiral [[pentation]] is specific superfunction of [[natural tetration]] (implementation [[fsexp.cin]] is available); so, the |
||
+ | pentation safisfies the [[transfer equation]] |
||
+ | |||
+ | $\mathrm{pen}(z\!+\!1) = \mathrm{tet}\Big( \mathrm{pen}(z)\Big)$ |
||
+ | |||
+ | The additional condition $\mathrm{pen}(1)=\mathrm e \approx 2.71$ is assumed. |
||
+ | |||
+ | Natural pentation is specific superfunction, it is constructed with [[regular iteration]] at the lowest real [[fixed point]] of [[natural tetration]], denoted with $L$. |
||
+ | |||
+ | |||
+ | ==[[C++]] generator of curves== |
||
+ | Files [[ado.cin]], [[fsexp.cin]], [[fslog.cin]] should be loaded in order to compile the [[C++]] code below |
||
+ | <poem><nomathjax><nowiki> |
||
+ | #include <math.h> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | #include <complex> |
||
+ | typedef std::complex<double> z_type; |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | #include "ado.cin" |
||
+ | #include "fsexp.cin" |
||
+ | #include "fslog.cin" |
||
+ | |||
+ | z_type pen0(z_type z){ |
||
+ | DB Lp=-1.8503545290271812; |
||
+ | DB k,a,b; |
||
+ | // k=1.86573322821; a=-.62632418; b=0.4827; |
||
+ | k=1.86573322821; a=-.6263241; b=0.4827; |
||
+ | |||
+ | z_type e=exp(k*z); |
||
+ | return Lp + e*(1.+e*(a+b*e)); |
||
+ | } |
||
+ | |||
+ | z_type pen7(z_type z){ DB x; int m,n; z=pen0(z+(2.24817451898-7.)); |
||
+ | DO(n,7) { if(Re(z)>8.) return 999.; z=FSEXP(z); if(abs(z)<40) goto L1; return 999.; L1: ;} |
||
+ | return z; } |
||
+ | |||
+ | z_type pen(z_type z){ DB x; int m,n; |
||
+ | x=Re(z); if(x<= -4.) return pen0(z); |
||
+ | m=int(x+5.); |
||
+ | z-=DB(m); |
||
+ | z=pen0(z); |
||
+ | DO(n,m) z=FSEXP(z); |
||
+ | return z; |
||
+ | } |
||
+ | |||
+ | int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd; |
||
+ | FILE *o;o=fopen("penplo.eps","w"); ado(o,608,1008); |
||
+ | fprintf(o,"404 204 translate\n 100 100 scale\n"); |
||
+ | #define M(x,y) fprintf(o,"%8.4f %8.4f M\n",0.+x,0.+y); |
||
+ | #define L(x,y) fprintf(o,"%8.4f %8.4f L\n",0.+x,0.+y); |
||
+ | for(m=-4;m<3;m++) {M(m,-2)L(m,8)} |
||
+ | for(n=-2;n<11;n++) {M( -4,n)L(2,n)} fprintf(o,"2 setlinecap 1 setlinejoin .004 W 0 0 0 RGB S\n"); |
||
+ | |||
+ | DO(n,150){x=-4+.04*n;y=Re(pen7(x)); if(n==0) M(x,y)else L(x,y); if(y>8.)break;} fprintf(o,".02 W 0 0 0 RGB S\n"); |
||
+ | |||
+ | DO(n,150){x=-2.2+.04*n;y=10.*(Re(pen7(x))-(1.+x)); if(n==0) M(x,y)else L(x,y); if(y>.3)break;} fprintf(o,".01 W 0 .5 0 RGB S\n"); |
||
+ | |||
+ | DB L=-1.8503545290271812; |
||
+ | DB K=1.86573322821; |
||
+ | DB a=-.6263241; |
||
+ | DB b=0.4827; |
||
+ | DO(n,80){x=-4.+.04*n; DB e=exp(K*(x+2.24817451898)); y=L+e; |
||
+ | if(n==0) M(x,y) else L(x,y); if(y>8.) break;} |
||
+ | fprintf(o,".01 W 0 0 1 RGB S\n"); |
||
+ | |||
+ | /* |
||
+ | DO(n,60){x=-4+.04*n; DB e=exp(K*(x+2.24817451898)); y=L+e*(1.+e*(a)); |
||
+ | if(n==0) M(x,y) else L(x,y); if(y>8.||y<-2.) break;} |
||
+ | */ |
||
+ | M(-4,L)L(0,L) |
||
+ | fprintf(o,".01 W 1 0 0 RGB S\n"); |
||
+ | |||
+ | |||
+ | /* |
||
+ | DO(n,60){x=-4+.04*n; DB e=exp(K*(x+2.24817451898)); y=L+e*(1.+e*(a+e*b)); |
||
+ | if(n==0) M(x,y) else L(x,y); if(y<-2.) break;} |
||
+ | fprintf(o,".01 W 1 0 0 RGB S\n"); |
||
+ | */ |
||
+ | |||
+ | DB t2=M_PI/1.86573322821; |
||
+ | DB tx=-2.32; |
||
+ | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
+ | |||
+ | printf("pen7(-1)=%18.14f\n", Re(pen7(-1.))); |
||
+ | printf("Pi/1.86573322821=%18.14f %18.14f\n", M_PI/1.86573322821, 2*M_PI/1.86573322821); |
||
+ | |||
+ | system("epstopdf penplo.eps"); |
||
+ | system( "open penplo.pdf"); |
||
+ | } |
||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==[[Latex]] generator of labels== |
||
+ | |||
+ | <poem><nomathjax><nowiki> |
||
+ | \documentclass[12pt]{article} |
||
+ | \paperwidth 608px |
||
+ | \paperheight 1008px |
||
+ | \textwidth 1394px |
||
+ | \textheight 1300px |
||
+ | \topmargin -104px |
||
+ | \oddsidemargin -90px |
||
+ | \usepackage{graphics} |
||
+ | \usepackage{rotating} |
||
+ | \newcommand \sx {\scalebox} |
||
+ | \newcommand \rot {\begin{rotate}} |
||
+ | \newcommand \ero {\end{rotate}} |
||
+ | \newcommand \ing {\includegraphics} |
||
+ | \newcommand \rmi {\mathrm{i}} |
||
+ | \begin{document} |
||
+ | {\begin{picture}(608,1008) |
||
+ | %\put(12,0){\ing{24}} |
||
+ | %\put(12,0){\ing{penma}} |
||
+ | \put(0,0){\ing{penplo}} |
||
+ | \put(377,994){\sx{3.2}{$y$}} |
||
+ | \put(377,895){\sx{3.2}{$7$}} |
||
+ | \put(377,795){\sx{3.2}{$6$}} |
||
+ | \put(377,695){\sx{3.2}{$5$}} |
||
+ | \put(377,594){\sx{3.2}{$4$}} |
||
+ | \put(377,494){\sx{3.2}{$3$}} |
||
+ | \put(377,394){\sx{3.2}{$2$}} |
||
+ | \put(377,294){\sx{3.2}{$1$}} |
||
+ | \put(377,194){\sx{3.2}{$0$}} |
||
+ | \put(358, 93){\sx{3.2}{$-1$}} |
||
+ | \put(80,174){\sx{3.2}{$-3$}} |
||
+ | \put(180,174){\sx{3.2}{$-2$}} |
||
+ | \put(280,174){\sx{3.2}{$-1$}} |
||
+ | \put(396,174){\sx{3.2}{$0$}} |
||
+ | \put(496,174){\sx{3.2}{$1$}} |
||
+ | \put(590,174){\sx{3.2}{$x$}} |
||
+ | \put(242,406){\sx{3.6}{\rot{85}$y\!=\!L+\exp(k(x\!+\!x_1))$\ero}} |
||
+ | % |
||
+ | %\put(560,510){\sx{3.6}{\rot{84}$y\!=\!L+\exp(k(x\!+\!x_1))$\ero}} |
||
+ | %\put(532,708){\sx{3.6}{\rot{86}$y\!=\!\mathrm{pen}(x)$\ero}} |
||
+ | \put(446,370){\sx{3.9}{\rot{70}$y\!=\!\mathrm{pen}(x)$\ero}} |
||
+ | %\put(366,236){\sx{2.3}{$y\!=\!10(\mathrm{pen}(x)\!-\!1\!-\!x)$}} |
||
+ | %\put(416,239){\sx{3.4}{$y=10\,\delta(x)$}} |
||
+ | \put(8,236){\sx{3.3}{$y=10\,\delta(x)$}} |
||
+ | %\put(366, 8){\sx{3.3}{$L$}} |
||
+ | \put(312, 9){\sx{3.2}{$y\!=\!L$}} |
||
+ | \end{picture} |
||
+ | \end{document} |
||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==References== |
||
+ | |||
+ | http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html <br> |
||
+ | http://www.ils.uec.ac.jp/~dima/PAPERS/2009analuxpRepri.pdf <br> |
||
+ | http://mizugadro.mydns.jp/PAPERS/2009analuxpRepri.pdf D.Kouznetsov. (2009). Solution of F(z+1)=exp(F(z)) in the complex z-plane. Mathematics of Computation, 78: 1647-1670. DOI:10.1090/S0025-5718-09-02188-7. |
||
+ | |||
+ | https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0 <br> |
||
+ | http://www.ils.uec.ac.jp/~dima/BOOK/202.pdf <br> |
||
+ | http://mizugadro.mydns.jp/BOOK/202.pdf |
||
+ | Д.Кузнецов. Суперфункции. Lambert Academic Publishing, 2014 (In Russian), page 269, figure 19.3. |
||
+ | |||
+ | http://www.ils.uec.ac.jp/~dima/PAPERS/2014acker.pdf |
||
+ | http://mizugadro.mydns.jp/PAPERS/2014acker.pdf |
||
+ | D.Kouznetsov. Holomorphic ackermanns. 2014, under consideration |
||
+ | |||
+ | [[Category:Ackermann]] |
||
+ | [[Category:Book]] |
||
+ | [[Category:BookPlot]] |
||
+ | [[Category:Explicit plot]] |
||
+ | [[Category:Natural pentation]] |
||
+ | [[Category:Pentation]] |
||
+ | [[Category:Superfunction]] |
||
+ | [[Category:Tetriation]] |
||
+ | [[Category:AMS]] |
Latest revision as of 08:46, 1 December 2018
Explicit plot of natural pentation,
$y=\mathrm{pen}(x)$ is shown with thick black line.
Other lines
The thin red line shows it asymptotic level $L\approx -1.8503545290271812$ is smallest real fixed point of natural tetration.
The thin blue line shows the asymptotic
$ y=L+\exp(k(x+x_1))$
where $k\approx 1.86573322821$
and $x_1 \approx 2.24817451898$
The thin green line shown the deviation from the linear approximation
$\mathrm{linear}(x)=1+x$
The deviation is denoted as $~\delta(x)=\mathrm{pen}(x)-\mathrm{linear}(x)$
In the range $-2.1\!<\!x\!<\!1.1$, the deviation is small, the linear approximation provides 2 correct significant digits. In order to make the deviation visible, it is scaled with factor 10, so, $y=10\delta(x)$ is plotted.
Description of natural pentation
Natiral pentation is specific superfunction of natural tetration (implementation fsexp.cin is available); so, the pentation safisfies the transfer equation
$\mathrm{pen}(z\!+\!1) = \mathrm{tet}\Big( \mathrm{pen}(z)\Big)$
The additional condition $\mathrm{pen}(1)=\mathrm e \approx 2.71$ is assumed.
Natural pentation is specific superfunction, it is constructed with regular iteration at the lowest real fixed point of natural tetration, denoted with $L$.
C++ generator of curves
Files ado.cin, fsexp.cin, fslog.cin should be loaded in order to compile the C++ code below
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "ado.cin"
#include "fsexp.cin"
#include "fslog.cin"
z_type pen0(z_type z){
DB Lp=-1.8503545290271812;
DB k,a,b;
// k=1.86573322821; a=-.62632418; b=0.4827;
k=1.86573322821; a=-.6263241; b=0.4827;
z_type e=exp(k*z);
return Lp + e*(1.+e*(a+b*e));
}
z_type pen7(z_type z){ DB x; int m,n; z=pen0(z+(2.24817451898-7.));
DO(n,7) { if(Re(z)>8.) return 999.; z=FSEXP(z); if(abs(z)<40) goto L1; return 999.; L1: ;}
return z; }
z_type pen(z_type z){ DB x; int m,n;
x=Re(z); if(x<= -4.) return pen0(z);
m=int(x+5.);
z-=DB(m);
z=pen0(z);
DO(n,m) z=FSEXP(z);
return z;
}
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
FILE *o;o=fopen("penplo.eps","w"); ado(o,608,1008);
fprintf(o,"404 204 translate\n 100 100 scale\n");
#define M(x,y) fprintf(o,"%8.4f %8.4f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%8.4f %8.4f L\n",0.+x,0.+y);
for(m=-4;m<3;m++) {M(m,-2)L(m,8)}
for(n=-2;n<11;n++) {M( -4,n)L(2,n)} fprintf(o,"2 setlinecap 1 setlinejoin .004 W 0 0 0 RGB S\n");
DO(n,150){x=-4+.04*n;y=Re(pen7(x)); if(n==0) M(x,y)else L(x,y); if(y>8.)break;} fprintf(o,".02 W 0 0 0 RGB S\n");
DO(n,150){x=-2.2+.04*n;y=10.*(Re(pen7(x))-(1.+x)); if(n==0) M(x,y)else L(x,y); if(y>.3)break;} fprintf(o,".01 W 0 .5 0 RGB S\n");
DB L=-1.8503545290271812;
DB K=1.86573322821;
DB a=-.6263241;
DB b=0.4827;
DO(n,80){x=-4.+.04*n; DB e=exp(K*(x+2.24817451898)); y=L+e;
if(n==0) M(x,y) else L(x,y); if(y>8.) break;}
fprintf(o,".01 W 0 0 1 RGB S\n");
/*
DO(n,60){x=-4+.04*n; DB e=exp(K*(x+2.24817451898)); y=L+e*(1.+e*(a));
if(n==0) M(x,y) else L(x,y); if(y>8.||y<-2.) break;}
*/
M(-4,L)L(0,L)
fprintf(o,".01 W 1 0 0 RGB S\n");
/*
DO(n,60){x=-4+.04*n; DB e=exp(K*(x+2.24817451898)); y=L+e*(1.+e*(a+e*b));
if(n==0) M(x,y) else L(x,y); if(y<-2.) break;}
fprintf(o,".01 W 1 0 0 RGB S\n");
*/
DB t2=M_PI/1.86573322821;
DB tx=-2.32;
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
printf("pen7(-1)=%18.14f\n", Re(pen7(-1.)));
printf("Pi/1.86573322821=%18.14f %18.14f\n", M_PI/1.86573322821, 2*M_PI/1.86573322821);
system("epstopdf penplo.eps");
system( "open penplo.pdf");
}
Latex generator of labels
\documentclass[12pt]{article}
\paperwidth 608px
\paperheight 1008px
\textwidth 1394px
\textheight 1300px
\topmargin -104px
\oddsidemargin -90px
\usepackage{graphics}
\usepackage{rotating}
\newcommand \sx {\scalebox}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\newcommand \ing {\includegraphics}
\newcommand \rmi {\mathrm{i}}
\begin{document}
{\begin{picture}(608,1008)
%\put(12,0){\ing{24}}
%\put(12,0){\ing{penma}}
\put(0,0){\ing{penplo}}
\put(377,994){\sx{3.2}{$y$}}
\put(377,895){\sx{3.2}{$7$}}
\put(377,795){\sx{3.2}{$6$}}
\put(377,695){\sx{3.2}{$5$}}
\put(377,594){\sx{3.2}{$4$}}
\put(377,494){\sx{3.2}{$3$}}
\put(377,394){\sx{3.2}{$2$}}
\put(377,294){\sx{3.2}{$1$}}
\put(377,194){\sx{3.2}{$0$}}
\put(358, 93){\sx{3.2}{$-1$}}
\put(80,174){\sx{3.2}{$-3$}}
\put(180,174){\sx{3.2}{$-2$}}
\put(280,174){\sx{3.2}{$-1$}}
\put(396,174){\sx{3.2}{$0$}}
\put(496,174){\sx{3.2}{$1$}}
\put(590,174){\sx{3.2}{$x$}}
\put(242,406){\sx{3.6}{\rot{85}$y\!=\!L+\exp(k(x\!+\!x_1))$\ero}}
%
%\put(560,510){\sx{3.6}{\rot{84}$y\!=\!L+\exp(k(x\!+\!x_1))$\ero}}
%\put(532,708){\sx{3.6}{\rot{86}$y\!=\!\mathrm{pen}(x)$\ero}}
\put(446,370){\sx{3.9}{\rot{70}$y\!=\!\mathrm{pen}(x)$\ero}}
%\put(366,236){\sx{2.3}{$y\!=\!10(\mathrm{pen}(x)\!-\!1\!-\!x)$}}
%\put(416,239){\sx{3.4}{$y=10\,\delta(x)$}}
\put(8,236){\sx{3.3}{$y=10\,\delta(x)$}}
%\put(366, 8){\sx{3.3}{$L$}}
\put(312, 9){\sx{3.2}{$y\!=\!L$}}
\end{picture}
\end{document}
References
http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html
http://www.ils.uec.ac.jp/~dima/PAPERS/2009analuxpRepri.pdf
http://mizugadro.mydns.jp/PAPERS/2009analuxpRepri.pdf D.Kouznetsov. (2009). Solution of F(z+1)=exp(F(z)) in the complex z-plane. Mathematics of Computation, 78: 1647-1670. DOI:10.1090/S0025-5718-09-02188-7.
https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0
http://www.ils.uec.ac.jp/~dima/BOOK/202.pdf
http://mizugadro.mydns.jp/BOOK/202.pdf
Д.Кузнецов. Суперфункции. Lambert Academic Publishing, 2014 (In Russian), page 269, figure 19.3.
http://www.ils.uec.ac.jp/~dima/PAPERS/2014acker.pdf http://mizugadro.mydns.jp/PAPERS/2014acker.pdf D.Kouznetsov. Holomorphic ackermanns. 2014, under consideration
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 06:13, 1 December 2018 | 1,266 × 2,100 (240 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following 2 pages use this file: