Difference between revisions of "File:Aupower2map.jpg"
(Importing image file) |
($ -> \() |
||
| (One intermediate revision by one other user not shown) | |||
| Line 1: | Line 1: | ||
| + | {{oq|Aupower2map.jpg|Original file (2,175 × 2,158 pixels, file size: 900 KB, MIME type: image/jpeg)}} |
||
| − | Importing image file |
||
| + | [[Complex map]] of the [[Abelfunction]] \(G\) of the power transfer function (quadratic function) \(T(z)\!=\!z^2\) is shown with |
||
| + | |||
| + | \(u\!+\!\mathrm i v=G(x\!+\!\mathrm i y)\) |
||
| + | |||
| + | \(G(z)=\log_2(\ln(z))=\ln^2(z)/\ln(2)\) |
||
| + | |||
| + | is solution of the [[Abel equation]] |
||
| + | |||
| + | \(G(T(z))=G(z)+1\) |
||
| + | |||
| + | Abelfunction \(G\) is inverse of the [[superpower]] function |
||
| + | |||
| + | \(F(z)=\exp(2^z)\) |
||
| + | |||
| + | which is solution of the transfer equation |
||
| + | |||
| + | \(F(z\!+\!1)=T(F(z))\) |
||
| + | |||
| + | for the quadratic transfer function \(T\) at base \(2\). |
||
| + | |||
| + | ==[[C++]] generator of map== |
||
| + | // Files [[ado.cin]] and [[conto.cin]] should be loaded in order to compile the code below. |
||
| + | <pre> |
||
| + | #include <math.h> |
||
| + | #include <stdio.h> |
||
| + | #include <stdlib.h> |
||
| + | #define DB double |
||
| + | #define DO(x,y) for(x=0;x<y;x++) |
||
| + | #include <complex> |
||
| + | typedef std::complex<double> z_type; |
||
| + | #define Re(x) x.real() |
||
| + | #define Im(x) x.imag() |
||
| + | #define I z_type(0.,1.) |
||
| + | #include "conto.cin" |
||
| + | int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; |
||
| + | int M=502,M1=M+1; |
||
| + | int N=502,N1=N+1; |
||
| + | DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
||
| + | char v[M1*N1]; // v is working array |
||
| + | FILE *o;o=fopen("aupower2ma.eps","w");ado(o,1020,1020); |
||
| + | fprintf(o,"510 510 translate\n 100 100 scale\n"); |
||
| + | DO(m,M1) X[m]=-5.+.02*(m-.5); |
||
| + | for(n=0;n<250;n++) Y[n]=-5.+.02*(n); |
||
| + | Y[250]=-.006; |
||
| + | Y[251]= .006; |
||
| + | for(n=252;n<N1;n++)Y[n]=-5.+.02*(n-1); |
||
| + | //DO(m,M1) X[m]=Y[m]; |
||
| + | |||
| + | for(m=-5;m<6;m++){if(m==0){M(m,-5.1)L(m,5.1)} else{M(m,-5)L(m,5)}} |
||
| + | for(n=-5;n<6;n++){ M( -5,n)L(5,n)} |
||
| + | fprintf(o,".01 W 0 0 0 RGB S\n"); |
||
| + | DO(m,M1)DO(n,N1){g[m*N1+n]=999999; f[m*N1+n]=999999;} |
||
| + | DO(m,M1){x=X[m]; //printf("%5.2f\n",x); |
||
| + | DO(n,N1){y=Y[n]; z=z_type(x,y); |
||
| + | // c=exp(pow(2.,z)); |
||
| + | c=log(log(z))/log(2.); |
||
| + | p=Re(c); |
||
| + | q=Im(c); |
||
| + | if(p>-99. && p<99. |
||
| + | && q>-99. && q<99. |
||
| + | ) |
||
| + | {g[m*N1+n]=p; |
||
| + | f[m*N1+n]=q; |
||
| + | } |
||
| + | }} |
||
| + | fprintf(o,"1 setlinejoin 1 setlinecap\n"); p=1;q=.5; |
||
| + | for(m=-11;m<11;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".013 W 0 .6 0 RGB S\n"); |
||
| + | for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".012 W .9 0 0 RGB S\n"); |
||
| + | for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".012 W 0 0 .9 RGB S\n"); |
||
| + | for(m=1;m<11;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".028 W .9 0 0 RGB S\n"); |
||
| + | for(m=1;m<11;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".028 W 0 0 .9 RGB S\n"); |
||
| + | conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".028 W .6 0 .6 RGB S\n"); |
||
| + | for(m=-10;m<0;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".024 W 0 0 0 RGB S\n"); |
||
| + | m=0; conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".024 W 0 0 0 RGB S\n"); |
||
| + | for(m=1;m<11;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".024 W 0 0 0 RGB S\n"); |
||
| + | |||
| + | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
| + | system("epstopdf aupower2ma.eps"); |
||
| + | system( "open aupower2ma.pdf"); |
||
| + | getchar(); system("killall Preview");//for mac |
||
| + | } |
||
| + | </pre> |
||
| + | |||
| + | ==[[Latex]] generator of labels== |
||
| + | <pre> |
||
| + | \documentclass[12pt]{article} |
||
| + | \usepackage{graphicx} |
||
| + | \usepackage{geometry} |
||
| + | \usepackage{rotating} |
||
| + | \paperwidth 1044px |
||
| + | \paperheight 1036px |
||
| + | \topmargin -98px |
||
| + | \oddsidemargin -90px |
||
| + | \textwidth 2000px |
||
| + | \textheight 2000px |
||
| + | \newcommand \ing {\includegraphics} |
||
| + | \newcommand \sx {\scalebox} |
||
| + | \newcommand \rot {\begin{rotate}} |
||
| + | \newcommand \ero {\end{rotate}} |
||
| + | \begin{document} |
||
| + | \begin{picture}(1030,1026) \normalsize |
||
| + | \put(30,20){\ing{"aupower2ma"}} |
||
| + | \put(16,1016){\sx{3}{$y$}} |
||
| + | \put(16,918){\sx{3}{$4$}} |
||
| + | \put(16,818){\sx{3}{$3$}} |
||
| + | \put(16,718){\sx{3}{$2$}} |
||
| + | \put(16,618){\sx{3}{$1$}} |
||
| + | \put(16,518){\sx{3}{$0$}} |
||
| + | \put(-10,418){\sx{3}{$-1$}} |
||
| + | \put(-10,318){\sx{3}{$-2$}} |
||
| + | \put(-10,218){\sx{3}{$-3$}} |
||
| + | \put(-10,118){\sx{3}{$-4$}} |
||
| + | \put(-10,18){\sx{3}{$-5$}} |
||
| + | \put(10,-1){\sx{3}{$-5$}} |
||
| + | \put(110,-1){\sx{3}{$-4$}} |
||
| + | \put(210,-1){\sx{3}{$-3$}} |
||
| + | \put(310,-1){\sx{3}{$-2$}} |
||
| + | \put(410,-1){\sx{3}{$-1$}} |
||
| + | \put(534,-1){\sx{3}{$0$}} |
||
| + | \put(634,-1){\sx{3}{$1$}} |
||
| + | \put(734,-1){\sx{3}{$2$}} |
||
| + | \put(834,-1){\sx{3}{$3$}} |
||
| + | \put(934,-1){\sx{3}{$4$}} |
||
| + | \put(1028,-1){\sx{3.1}{$x$}} |
||
| + | \put(150,522){\rot{0}{ \sx{3}{\bf cut}} \ero} |
||
| + | %\put(150,68){\rot{0.}{ \sx{3}{$v\!=\!0$}} \ero} |
||
| + | %\put(790,522){\rot{0}{ \sx{3}{$v\!=\!0$}} \ero} |
||
| + | \put(246,422){\rot{34}{ \sx{3}{$u\!=\!1.6$}} \ero} |
||
| + | \put(332,344){\rot{54}{ \sx{3}{$u\!=\!1.4$}} \ero}%% |
||
| + | \put(295,900){\rot{84}{ \sx{3}{$u\!=\!1.4$}} \ero}% |
||
| + | \put(430,882){\rot{63}{ \sx{3}{$u\!=\!1.2$}} \ero} |
||
| + | \put(526,845){\rot{50}{ \sx{3}{$u\!=\!1$}} \ero} |
||
| + | \put(490,662){\rot{-5}{ \sx{3}{$v\!=\!2$}} \ero}%% |
||
| + | \put(734,742){\rot{90}{ \sx{3}{$v\!=\!1$}} \ero} |
||
| + | \put(790,740){\rot{75}{ \sx{3}{$v\!=\!0.8$}} \ero} |
||
| + | \put(846,710){\rot{56}{ \sx{3}{$v\!=\!0.6$}} \ero} |
||
| + | \put(900,664){\rot{39}{ \sx{3}{$v\!=\!0.4$}} \ero} |
||
| + | \put(930,600){\rot{17}{ \sx{3}{$v\!=\!0.2$}} \ero} |
||
| + | \put(950,523){\rot{0}{ \sx{3}{$v\!=\!0$}} \ero} |
||
| + | \put(910,453){\rot{-20}{ \sx{3}{$v\!=\!-0.2$}} \ero} |
||
| + | \put(733,244){\rot{90}{ \sx{3}{$v\!=\!-1$}} \ero} |
||
| + | \put(490,388){\rot{6}{ \sx{3}{$v\!=\!-2$}} \ero} |
||
| + | % |
||
| + | \put(746,432){\rot{65}{ \sx{3}{$u\!=\!-0.2$}} \ero} |
||
| + | \put(778,420){\rot{57}{ \sx{3}{$u\!=\!0$}} \ero} |
||
| + | \put(800,390){\rot{51}{ \sx{3}{$u\!=\!0.2$}} \ero} |
||
| + | \put(846,358){\rot{50}{ \sx{3}{$u\!=\!0.4$}} \ero} |
||
| + | \put(902,308){\rot{47}{ \sx{3}{$u\!=\!0.6$}} \ero} |
||
| + | \put(965,227){\rot{41}{ \sx{3}{$u\!=\!0.8$}} \ero} |
||
| + | \end{picture} |
||
| + | \end{document} |
||
| + | </pre> |
||
| + | |||
| + | ==References== |
||
| + | {{ref}} |
||
| + | |||
| + | https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other superfunctions. Formulas,algorithms,tables,graphics ペーパーバック – 2020/7/28 |
||
| + | |||
| + | https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other superfunctions. Formulas, algorithms, tables, graphics. Publisher: [[Lambert Academic Publishing]]. |
||
| + | |||
| + | {{fer}} |
||
| + | |||
| + | ==Keywords== |
||
| + | <b>«[[]]»</b>, |
||
| + | <b>«[[Abelpower]]»</b>, |
||
| + | <b>«[[Power function]]»</b>, |
||
| + | «[[Superfunctions]]», |
||
| + | <b>«[[Superpower]]»</b>, |
||
| + | «[[Table of superfunctions]]», |
||
| + | |||
| + | [[Category:Abel function]] |
||
| + | [[Category:Abelpower]] |
||
| + | [[Category:AuPow]] |
||
| + | [[Category:Book]] |
||
| + | [[Category:BookMap]] |
||
| + | [[Category:C++]] |
||
| + | [[Category:Complex map]] |
||
| + | [[Category:Latex]] |
||
| + | [[Category:Power function]] |
||
| + | [[Category:Superfunctions]] |
||
| + | [[Category:Superpower]] |
||
Latest revision as of 14:09, 16 August 2025
Complex map of the Abelfunction \(G\) of the power transfer function (quadratic function) \(T(z)\!=\!z^2\) is shown with
\(u\!+\!\mathrm i v=G(x\!+\!\mathrm i y)\)
\(G(z)=\log_2(\ln(z))=\ln^2(z)/\ln(2)\)
is solution of the Abel equation
\(G(T(z))=G(z)+1\)
Abelfunction \(G\) is inverse of the superpower function
\(F(z)=\exp(2^z)\)
which is solution of the transfer equation
\(F(z\!+\!1)=T(F(z))\)
for the quadratic transfer function \(T\) at base \(2\).
C++ generator of map
// Files ado.cin and conto.cin should be loaded in order to compile the code below.
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
int M=502,M1=M+1;
int N=502,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
FILE *o;o=fopen("aupower2ma.eps","w");ado(o,1020,1020);
fprintf(o,"510 510 translate\n 100 100 scale\n");
DO(m,M1) X[m]=-5.+.02*(m-.5);
for(n=0;n<250;n++) Y[n]=-5.+.02*(n);
Y[250]=-.006;
Y[251]= .006;
for(n=252;n<N1;n++)Y[n]=-5.+.02*(n-1);
//DO(m,M1) X[m]=Y[m];
for(m=-5;m<6;m++){if(m==0){M(m,-5.1)L(m,5.1)} else{M(m,-5)L(m,5)}}
for(n=-5;n<6;n++){ M( -5,n)L(5,n)}
fprintf(o,".01 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){g[m*N1+n]=999999; f[m*N1+n]=999999;}
DO(m,M1){x=X[m]; //printf("%5.2f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y);
// c=exp(pow(2.,z));
c=log(log(z))/log(2.);
p=Re(c);
q=Im(c);
if(p>-99. && p<99.
&& q>-99. && q<99.
)
{g[m*N1+n]=p;
f[m*N1+n]=q;
}
}}
fprintf(o,"1 setlinejoin 1 setlinecap\n"); p=1;q=.5;
for(m=-11;m<11;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".013 W 0 .6 0 RGB S\n");
for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".012 W .9 0 0 RGB S\n");
for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".012 W 0 0 .9 RGB S\n");
for(m=1;m<11;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".028 W .9 0 0 RGB S\n");
for(m=1;m<11;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".028 W 0 0 .9 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".028 W .6 0 .6 RGB S\n");
for(m=-10;m<0;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".024 W 0 0 0 RGB S\n");
m=0; conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".024 W 0 0 0 RGB S\n");
for(m=1;m<11;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".024 W 0 0 0 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf aupower2ma.eps");
system( "open aupower2ma.pdf");
getchar(); system("killall Preview");//for mac
}
Latex generator of labels
\documentclass[12pt]{article}
\usepackage{graphicx}
\usepackage{geometry}
\usepackage{rotating}
\paperwidth 1044px
\paperheight 1036px
\topmargin -98px
\oddsidemargin -90px
\textwidth 2000px
\textheight 2000px
\newcommand \ing {\includegraphics}
\newcommand \sx {\scalebox}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\begin{document}
\begin{picture}(1030,1026) \normalsize
\put(30,20){\ing{"aupower2ma"}}
\put(16,1016){\sx{3}{$y$}}
\put(16,918){\sx{3}{$4$}}
\put(16,818){\sx{3}{$3$}}
\put(16,718){\sx{3}{$2$}}
\put(16,618){\sx{3}{$1$}}
\put(16,518){\sx{3}{$0$}}
\put(-10,418){\sx{3}{$-1$}}
\put(-10,318){\sx{3}{$-2$}}
\put(-10,218){\sx{3}{$-3$}}
\put(-10,118){\sx{3}{$-4$}}
\put(-10,18){\sx{3}{$-5$}}
\put(10,-1){\sx{3}{$-5$}}
\put(110,-1){\sx{3}{$-4$}}
\put(210,-1){\sx{3}{$-3$}}
\put(310,-1){\sx{3}{$-2$}}
\put(410,-1){\sx{3}{$-1$}}
\put(534,-1){\sx{3}{$0$}}
\put(634,-1){\sx{3}{$1$}}
\put(734,-1){\sx{3}{$2$}}
\put(834,-1){\sx{3}{$3$}}
\put(934,-1){\sx{3}{$4$}}
\put(1028,-1){\sx{3.1}{$x$}}
\put(150,522){\rot{0}{ \sx{3}{\bf cut}} \ero}
%\put(150,68){\rot{0.}{ \sx{3}{$v\!=\!0$}} \ero}
%\put(790,522){\rot{0}{ \sx{3}{$v\!=\!0$}} \ero}
\put(246,422){\rot{34}{ \sx{3}{$u\!=\!1.6$}} \ero}
\put(332,344){\rot{54}{ \sx{3}{$u\!=\!1.4$}} \ero}%%
\put(295,900){\rot{84}{ \sx{3}{$u\!=\!1.4$}} \ero}%
\put(430,882){\rot{63}{ \sx{3}{$u\!=\!1.2$}} \ero}
\put(526,845){\rot{50}{ \sx{3}{$u\!=\!1$}} \ero}
\put(490,662){\rot{-5}{ \sx{3}{$v\!=\!2$}} \ero}%%
\put(734,742){\rot{90}{ \sx{3}{$v\!=\!1$}} \ero}
\put(790,740){\rot{75}{ \sx{3}{$v\!=\!0.8$}} \ero}
\put(846,710){\rot{56}{ \sx{3}{$v\!=\!0.6$}} \ero}
\put(900,664){\rot{39}{ \sx{3}{$v\!=\!0.4$}} \ero}
\put(930,600){\rot{17}{ \sx{3}{$v\!=\!0.2$}} \ero}
\put(950,523){\rot{0}{ \sx{3}{$v\!=\!0$}} \ero}
\put(910,453){\rot{-20}{ \sx{3}{$v\!=\!-0.2$}} \ero}
\put(733,244){\rot{90}{ \sx{3}{$v\!=\!-1$}} \ero}
\put(490,388){\rot{6}{ \sx{3}{$v\!=\!-2$}} \ero}
%
\put(746,432){\rot{65}{ \sx{3}{$u\!=\!-0.2$}} \ero}
\put(778,420){\rot{57}{ \sx{3}{$u\!=\!0$}} \ero}
\put(800,390){\rot{51}{ \sx{3}{$u\!=\!0.2$}} \ero}
\put(846,358){\rot{50}{ \sx{3}{$u\!=\!0.4$}} \ero}
\put(902,308){\rot{47}{ \sx{3}{$u\!=\!0.6$}} \ero}
\put(965,227){\rot{41}{ \sx{3}{$u\!=\!0.8$}} \ero}
\end{picture}
\end{document}
References
https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas,algorithms,tables,graphics ペーパーバック – 2020/7/28
https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas, algorithms, tables, graphics. Publisher: Lambert Academic Publishing.
Keywords
«[[]]», «Abelpower», «Power function», «Superfunctions», «Superpower», «Table of superfunctions»,
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 06:10, 1 December 2018 | 2,175 × 2,158 (900 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following 3 pages use this file: