Difference between revisions of "File:Apow2ma4.jpg"
($ -> \() |
|||
| Line 1: | Line 1: | ||
| + | {{oq|Aupower2map.jpg|Original file (2,175 × 2,158 pixels, file size: 900 KB, MIME type: image/jpeg)}} |
||
| − | Two complex maps of the real-holomorphic [[abelpower]] functions, |
||
| + | [[Complex map]] of the [[Abelfunction]] \(G\) of the power transfer function (quadratic function) \(T(z)\!=\!z^2\) is shown with |
||
| + | \(u\!+\!\mathrm i v=G(x\!+\!\mathrm i y)\) |
||
| − | [[AuPow]]$_2(z)\!=\!\log_2(\ln(z))~$ and $~$ |
||
| − | [[AdPow]]$_2(z)\!=\!\log_2(\ln(1/z))$ |
||
| + | \(G(z)=\log_2(\ln(z))=\ln^2(z)/\ln(2)\) |
||
| − | Left: $u\!+\!\mathrm i v=\mathrm{AuPow}_2(x\!+\!\mathrm i y)$ |
||
| + | is solution of the [[Abel equation]] |
||
| − | Right: $u\!+\!\mathrm i v=\mathrm{AdPow}_2(x\!+\!\mathrm i y)$ |
||
| + | \(G(T(z))=G(z)+1\) |
||
| − | ==Description== |
||
| + | Abelfunction \(G\) is inverse of the [[superpower]] function |
||
| − | The two real–holomorphic solutions $G$ of the [[Abel equation]] |
||
| − | + | \(F(z)=\exp(2^z)\) |
|
| + | which is solution of the transfer equation |
||
| − | for $T(z)\!=\!z^2$ |
||
| − | are shown. |
||
| + | \(F(z\!+\!1)=T(F(z))\) |
||
| − | Lines of the constant real part are the same for both maps. |
||
| + | for the quadratic transfer function \(T\) at base \(2\). |
||
| − | The imaginary parts differ for a constant, but this constant has jumps at the cutlines. |
||
| − | All these cutlines are at the real axis. |
||
| + | ==[[C++]] generator of map== |
||
| − | Both function have cut for negative values of argument. |
||
| + | // Files [[ado.cin]] and [[conto.cin]] should be loaded in order to compile the code below. |
||
| − | Each of them has also one additional cut: |
||
| + | <pre> |
||
| − | |||
| − | [[AuPow]] has cut segment between zero and unity. |
||
| − | |||
| − | [[AdPow]] has cut from unity to infinity. |
||
| − | |||
| − | Many other abelfunctions for the same transfer function can be obtained adding to the function some periodic function with period unity. Such functions show fast (at least exponential) growth in the imaginary direction; the abelfunctions shown seem to be simplest possible. |
||
| − | |||
| − | ==[[C++]] generator of left map== |
||
| − | // [[ado.cin]] and [[conto.cin]] should be loaded for compilation of the codes below: |
||
| − | <poem><nomathjax><nowiki> |
||
#include <math.h> |
#include <math.h> |
||
#include <stdio.h> |
#include <stdio.h> |
||
| Line 46: | Line 35: | ||
#include "conto.cin" |
#include "conto.cin" |
||
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; |
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; |
||
| − | int M= |
+ | int M=502,M1=M+1; |
| − | int N= |
+ | int N=502,N1=N+1; |
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
||
char v[M1*N1]; // v is working array |
char v[M1*N1]; // v is working array |
||
| − | FILE *o;o=fopen(" |
+ | FILE *o;o=fopen("aupower2ma.eps","w");ado(o,1020,1020); |
| − | fprintf(o," |
+ | fprintf(o,"510 510 translate\n 100 100 scale\n"); |
| − | DO(m,M1) X[m]=- |
+ | DO(m,M1) X[m]=-5.+.02*(m-.5); |
| − | for(n=0;n<250;n++) Y[n]=- |
+ | for(n=0;n<250;n++) Y[n]=-5.+.02*(n); |
| − | Y[ |
+ | Y[250]=-.006; |
| − | Y[ |
+ | Y[251]= .006; |
| − | for(n= |
+ | for(n=252;n<N1;n++)Y[n]=-5.+.02*(n-1); |
//DO(m,M1) X[m]=Y[m]; |
//DO(m,M1) X[m]=Y[m]; |
||
| − | for(m=- |
+ | for(m=-5;m<6;m++){if(m==0){M(m,-5.1)L(m,5.1)} else{M(m,-5)L(m,5)}} |
| − | for(n=- |
+ | for(n=-5;n<6;n++){ M( -5,n)L(5,n)} |
fprintf(o,".01 W 0 0 0 RGB S\n"); |
fprintf(o,".01 W 0 0 0 RGB S\n"); |
||
DO(m,M1)DO(n,N1){g[m*N1+n]=999999; f[m*N1+n]=999999;} |
DO(m,M1)DO(n,N1){g[m*N1+n]=999999; f[m*N1+n]=999999;} |
||
DO(m,M1){x=X[m]; //printf("%5.2f\n",x); |
DO(m,M1){x=X[m]; //printf("%5.2f\n",x); |
||
DO(n,N1){y=Y[n]; z=z_type(x,y); |
DO(n,N1){y=Y[n]; z=z_type(x,y); |
||
| − | // c=exp(pow(2.,z)); |
+ | // c=exp(pow(2.,z)); |
| − | // c=log(log(1./z))/log(2.); |
||
c=log(log(z))/log(2.); |
c=log(log(z))/log(2.); |
||
p=Re(c); |
p=Re(c); |
||
| − | q=Im(c); |
+ | q=Im(c); |
if(p>-99. && p<99. |
if(p>-99. && p<99. |
||
| − | && q>-99. && q<99. |
+ | && q>-99. && q<99. |
) |
) |
||
{g[m*N1+n]=p; |
{g[m*N1+n]=p; |
||
| Line 78: | Line 66: | ||
}} |
}} |
||
fprintf(o,"1 setlinejoin 1 setlinecap\n"); p=1;q=.5; |
fprintf(o,"1 setlinejoin 1 setlinecap\n"); p=1;q=.5; |
||
| − | for(m=-11;m<11;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,". |
+ | for(m=-11;m<11;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".013 W 0 .6 0 RGB S\n"); |
| − | for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,". |
+ | for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".012 W .9 0 0 RGB S\n"); |
| − | for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,". |
+ | for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".012 W 0 0 .9 RGB S\n"); |
| − | for(m=1;m<11;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,". |
+ | for(m=1;m<11;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".028 W .9 0 0 RGB S\n"); |
| − | for(m=1;m<11;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,". |
+ | for(m=1;m<11;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".028 W 0 0 .9 RGB S\n"); |
| − | conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,". |
+ | conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".028 W .6 0 .6 RGB S\n"); |
| − | for(m=-10;m<0;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,". |
+ | for(m=-10;m<0;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".024 W 0 0 0 RGB S\n"); |
| − | m=0; conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,". |
+ | m=0; conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".024 W 0 0 0 RGB S\n"); |
| − | for(m=1;m<11;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,". |
+ | for(m=1;m<11;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".024 W 0 0 0 RGB S\n"); |
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
| − | system("epstopdf |
+ | system("epstopdf aupower2ma.eps"); |
| − | system( "open |
+ | system( "open aupower2ma.pdf"); |
getchar(); system("killall Preview");//for mac |
getchar(); system("killall Preview");//for mac |
||
} |
} |
||
| + | </pre> |
||
| − | |||
| − | </nowiki></nomathjax></poem> |
||
| − | |||
| − | ==[[C++]] generator of right map== |
||
| − | [[ado.cin]] and [[conto.cin]] should be loaded |
||
| − | <poem><nomathjax><nowiki> |
||
| − | #include <math.h> |
||
| − | #include <stdio.h> |
||
| − | #include <stdlib.h> |
||
| − | #define DB double |
||
| − | #define DO(x,y) for(x=0;x<y;x++) |
||
| − | #include <complex> |
||
| − | typedef std::complex<double> z_type; |
||
| − | #define Re(x) x.real() |
||
| − | #define Im(x) x.imag() |
||
| − | #define I z_type(0.,1.) |
||
| − | #include "conto.cin" |
||
| − | int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; |
||
| − | int M=402,M1=M+1; |
||
| − | int N=402,N1=N+1; |
||
| − | DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
||
| − | char v[M1*N1]; // v is working array |
||
| − | FILE *o;o=fopen("adpow2ma4.eps","w");ado(o,420,420); |
||
| − | fprintf(o,"210 210 translate\n 100 100 scale\n"); |
||
| − | DO(m,M1) X[m]=-2.+.01*(m-.5); |
||
| − | for(n=0;n<250;n++) Y[n]=-2.+.01*(n); |
||
| − | Y[200]=-.006; |
||
| − | Y[201]= .006; |
||
| − | for(n=202;n<N1;n++)Y[n]=-2.+.01*(n-1); |
||
| − | //DO(m,M1) X[m]=Y[m]; |
||
| − | |||
| − | for(m=-2;m<3;m++){if(m==0){M(m,-2.1)L(m,2.1)} else{M(m,-2)L(m,2)}} |
||
| − | for(n=-2;n<3;n++){ M( -2,n)L(2,n)} |
||
| − | fprintf(o,".01 W 0 0 0 RGB S\n"); |
||
| − | DO(m,M1)DO(n,N1){g[m*N1+n]=999999; f[m*N1+n]=999999;} |
||
| − | DO(m,M1){x=X[m]; //printf("%5.2f\n",x); |
||
| − | DO(n,N1){y=Y[n]; z=z_type(x,y); |
||
| − | // c=exp(pow(2.,z)); |
||
| − | c=log(log(1./z))/log(2.); |
||
| − | // c=log(log(z))/log(2.); |
||
| − | p=Re(c); |
||
| − | q=Im(c); |
||
| − | if(p>-99. && p<99. |
||
| − | && q>-99. && q<99. |
||
| − | ) |
||
| − | {g[m*N1+n]=p; |
||
| − | f[m*N1+n]=q; |
||
| − | } |
||
| − | }} |
||
| − | fprintf(o,"1 setlinejoin 1 setlinecap\n"); p=1;q=.5; |
||
| − | for(m=-11;m<11;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".01 W 0 .6 0 RGB S\n"); |
||
| − | for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".01 W .9 0 0 RGB S\n"); |
||
| − | for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".01 W 0 0 .9 RGB S\n"); |
||
| − | for(m=1;m<11;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".02 W .9 0 0 RGB S\n"); |
||
| − | for(m=1;m<11;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".02 W 0 0 .9 RGB S\n"); |
||
| − | conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".02 W .6 0 .6 RGB S\n"); |
||
| − | for(m=-10;m<0;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".02 W 0 0 0 RGB S\n"); |
||
| − | m=0; conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".02 W 0 0 0 RGB S\n"); |
||
| − | for(m=1;m<11;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".02 W 0 0 0 RGB S\n"); |
||
| − | |||
| − | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
| − | system("epstopdf adpow2ma4.eps"); |
||
| − | system( "open adpow2ma4.pdf"); |
||
| − | getchar(); system("killall Preview");//for mac |
||
| − | } |
||
| − | |||
| − | </nowiki></nomathjax></poem> |
||
==[[Latex]] generator of labels== |
==[[Latex]] generator of labels== |
||
| + | <pre> |
||
| − | |||
| − | <poem><nomathjax><nowiki> |
||
\documentclass[12pt]{article} |
\documentclass[12pt]{article} |
||
\usepackage{graphicx} |
\usepackage{graphicx} |
||
\usepackage{geometry} |
\usepackage{geometry} |
||
\usepackage{rotating} |
\usepackage{rotating} |
||
| − | + | \paperwidth 1044px |
|
| + | \paperheight 1036px |
||
| − | \paperwidth 854px |
||
| − | \paperheight 422px |
||
\topmargin -98px |
\topmargin -98px |
||
\oddsidemargin -90px |
\oddsidemargin -90px |
||
| Line 179: | Line 99: | ||
\newcommand \rot {\begin{rotate}} |
\newcommand \rot {\begin{rotate}} |
||
\newcommand \ero {\end{rotate}} |
\newcommand \ero {\end{rotate}} |
||
| − | \newcommand \axey { |
||
| − | \put(12,412){\sx{2}{$y$}} |
||
| − | \put(12,312){\sx{2}{$1$}} |
||
| − | \put(12,212){\sx{2}{$0$}} |
||
| − | \put(-3,112){\sx{2}{$-1$}} |
||
| − | \put(-3,11){\sx{2}{$-2$}}} |
||
| − | \newcommand \axexb { |
||
| − | \put( 13, 1){\sx{2}{$-2$}} |
||
| − | \put(112, 1){\sx{2}{$-1$}} |
||
| − | \put(225, 1){\sx{2}{$0$}} |
||
| − | \put(325, 1){\sx{2}{$1$}} |
||
| − | \put(419, 1){\sx{2.1}{$x$}} |
||
| − | \put(32, 252){\rot{-18}{ \sx{1.8}{$u\!=\!1.6$}} \ero} |
||
| − | \put( 68,216){\rot{0}{ \sx{1.6}{\bf cut}} \ero} |
||
| − | \put(32, 178){\rot{18}{ \sx{1.8}{$u\!=\!1.6$}} \ero} |
||
| − | \put(36, 64){\rot{51}{ \sx{1.8}{$u\!=\!1.4$}} \ero} |
||
| − | \put(109, 23){\rot{71}{ \sx{1.8}{$u\!=\!1.2$}} \ero} |
||
| − | \put(174, 23){\rot{86}{ \sx{1.9}{$u\!=\!1$}} \ero} |
||
| − | \put(348,104){\rot{11}{ \sx{1.8}{$u\!=\!-0.2$}} \ero} |
||
| − | \put(354,83){\rot{0}{ \sx{1.8}{$u\!=\!0$}} \ero} |
||
| − | \put(348,55){\rot{-5}{ \sx{1.8}{$u\!=\!0.2$}} \ero} |
||
| − | } |
||
\begin{document} |
\begin{document} |
||
| − | \begin{picture}( |
+ | \begin{picture}(1030,1026) \normalsize |
| + | \put(30,20){\ing{"aupower2ma"}} |
||
| − | \put(240,351){\rot{-27}{ \sx{1.8}{$v\!=\!2$}} \ero} |
||
| − | \put( |
+ | \put(16,1016){\sx{3}{$y$}} |
| − | \put( |
+ | \put(16,918){\sx{3}{$4$}} |
| − | \put( |
+ | \put(16,818){\sx{3}{$3$}} |
| − | \put( |
+ | \put(16,718){\sx{3}{$2$}} |
| − | \put( |
+ | \put(16,618){\sx{3}{$1$}} |
| − | \put( |
+ | \put(16,518){\sx{3}{$0$}} |
| + | \put(-10,418){\sx{3}{$-1$}} |
||
| − | \end{picture} |
||
| + | \put(-10,318){\sx{3}{$-2$}} |
||
| − | \begin{picture}(420,413) \normalsize \put(20,10){\ing{"adpow2ma4"}} \axexb |
||
| − | \put( |
+ | \put(-10,218){\sx{3}{$-3$}} |
| − | \put( |
+ | \put(-10,118){\sx{3}{$-4$}} |
| − | \put( |
+ | \put(-10,18){\sx{3}{$-5$}} |
| − | \put( |
+ | \put(10,-1){\sx{3}{$-5$}} |
| − | \put( |
+ | \put(110,-1){\sx{3}{$-4$}} |
| + | \put(210,-1){\sx{3}{$-3$}} |
||
| − | |||
| − | \put( |
+ | \put(310,-1){\sx{3}{$-2$}} |
| − | \put( |
+ | \put(410,-1){\sx{3}{$-1$}} |
| + | \put(534,-1){\sx{3}{$0$}} |
||
| + | \put(634,-1){\sx{3}{$1$}} |
||
| + | \put(734,-1){\sx{3}{$2$}} |
||
| + | \put(834,-1){\sx{3}{$3$}} |
||
| + | \put(934,-1){\sx{3}{$4$}} |
||
| + | \put(1028,-1){\sx{3.1}{$x$}} |
||
| + | \put(150,522){\rot{0}{ \sx{3}{\bf cut}} \ero} |
||
| + | %\put(150,68){\rot{0.}{ \sx{3}{$v\!=\!0$}} \ero} |
||
| + | %\put(790,522){\rot{0}{ \sx{3}{$v\!=\!0$}} \ero} |
||
| + | \put(246,422){\rot{34}{ \sx{3}{$u\!=\!1.6$}} \ero} |
||
| + | \put(332,344){\rot{54}{ \sx{3}{$u\!=\!1.4$}} \ero}%% |
||
| + | \put(295,900){\rot{84}{ \sx{3}{$u\!=\!1.4$}} \ero}% |
||
| + | \put(430,882){\rot{63}{ \sx{3}{$u\!=\!1.2$}} \ero} |
||
| + | \put(526,845){\rot{50}{ \sx{3}{$u\!=\!1$}} \ero} |
||
| + | \put(490,662){\rot{-5}{ \sx{3}{$v\!=\!2$}} \ero}%% |
||
| + | \put(734,742){\rot{90}{ \sx{3}{$v\!=\!1$}} \ero} |
||
| + | \put(790,740){\rot{75}{ \sx{3}{$v\!=\!0.8$}} \ero} |
||
| + | \put(846,710){\rot{56}{ \sx{3}{$v\!=\!0.6$}} \ero} |
||
| + | \put(900,664){\rot{39}{ \sx{3}{$v\!=\!0.4$}} \ero} |
||
| + | \put(930,600){\rot{17}{ \sx{3}{$v\!=\!0.2$}} \ero} |
||
| + | \put(950,523){\rot{0}{ \sx{3}{$v\!=\!0$}} \ero} |
||
| + | \put(910,453){\rot{-20}{ \sx{3}{$v\!=\!-0.2$}} \ero} |
||
| + | \put(733,244){\rot{90}{ \sx{3}{$v\!=\!-1$}} \ero} |
||
| + | \put(490,388){\rot{6}{ \sx{3}{$v\!=\!-2$}} \ero} |
||
| + | % |
||
| + | \put(746,432){\rot{65}{ \sx{3}{$u\!=\!-0.2$}} \ero} |
||
| + | \put(778,420){\rot{57}{ \sx{3}{$u\!=\!0$}} \ero} |
||
| + | \put(800,390){\rot{51}{ \sx{3}{$u\!=\!0.2$}} \ero} |
||
| + | \put(846,358){\rot{50}{ \sx{3}{$u\!=\!0.4$}} \ero} |
||
| + | \put(902,308){\rot{47}{ \sx{3}{$u\!=\!0.6$}} \ero} |
||
| + | \put(965,227){\rot{41}{ \sx{3}{$u\!=\!0.8$}} \ero} |
||
\end{picture} |
\end{picture} |
||
\end{document} |
\end{document} |
||
| + | </pre> |
||
| − | </nowiki></nomathjax></poem> |
||
==References== |
==References== |
||
| + | {{ref}} |
||
| − | <references/> |
||
| + | |||
| + | https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other superfunctions. Formulas,algorithms,tables,graphics ペーパーバック – 2020/7/28 |
||
| + | |||
| + | https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other superfunctions. Formulas, algorithms, tables, graphics. Publisher: [[Lambert Academic Publishing]]. |
||
| + | |||
| + | {{fer}} |
||
| + | |||
| + | ==Keywords== |
||
| + | <b>«[[]]»</b>, |
||
| + | <b>«[[Abelpower]]»</b>, |
||
| + | <b>«[[Power function]]»</b>, |
||
| + | «[[Superfunctions]]», |
||
| + | <b>«[[Superpower]]»</b>, |
||
| + | «[[Table of superfunctions]]», |
||
| − | [[Category: |
+ | [[Category:Abel function]] |
[[Category:Abelpower]] |
[[Category:Abelpower]] |
||
| − | [[Category:AdPow]] |
||
[[Category:AuPow]] |
[[Category:AuPow]] |
||
[[Category:Book]] |
[[Category:Book]] |
||
[[Category:BookMap]] |
[[Category:BookMap]] |
||
| + | [[Category:C++]] |
||
[[Category:Complex map]] |
[[Category:Complex map]] |
||
| + | [[Category:Latex]] |
||
| + | [[Category:Power function]] |
||
[[Category:Superfunctions]] |
[[Category:Superfunctions]] |
||
| + | [[Category:Superpower]] |
||
Latest revision as of 14:12, 16 August 2025
Complex map of the Abelfunction \(G\) of the power transfer function (quadratic function) \(T(z)\!=\!z^2\) is shown with
\(u\!+\!\mathrm i v=G(x\!+\!\mathrm i y)\)
\(G(z)=\log_2(\ln(z))=\ln^2(z)/\ln(2)\)
is solution of the Abel equation
\(G(T(z))=G(z)+1\)
Abelfunction \(G\) is inverse of the superpower function
\(F(z)=\exp(2^z)\)
which is solution of the transfer equation
\(F(z\!+\!1)=T(F(z))\)
for the quadratic transfer function \(T\) at base \(2\).
C++ generator of map
// Files ado.cin and conto.cin should be loaded in order to compile the code below.
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
int M=502,M1=M+1;
int N=502,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
FILE *o;o=fopen("aupower2ma.eps","w");ado(o,1020,1020);
fprintf(o,"510 510 translate\n 100 100 scale\n");
DO(m,M1) X[m]=-5.+.02*(m-.5);
for(n=0;n<250;n++) Y[n]=-5.+.02*(n);
Y[250]=-.006;
Y[251]= .006;
for(n=252;n<N1;n++)Y[n]=-5.+.02*(n-1);
//DO(m,M1) X[m]=Y[m];
for(m=-5;m<6;m++){if(m==0){M(m,-5.1)L(m,5.1)} else{M(m,-5)L(m,5)}}
for(n=-5;n<6;n++){ M( -5,n)L(5,n)}
fprintf(o,".01 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){g[m*N1+n]=999999; f[m*N1+n]=999999;}
DO(m,M1){x=X[m]; //printf("%5.2f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y);
// c=exp(pow(2.,z));
c=log(log(z))/log(2.);
p=Re(c);
q=Im(c);
if(p>-99. && p<99.
&& q>-99. && q<99.
)
{g[m*N1+n]=p;
f[m*N1+n]=q;
}
}}
fprintf(o,"1 setlinejoin 1 setlinecap\n"); p=1;q=.5;
for(m=-11;m<11;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".013 W 0 .6 0 RGB S\n");
for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".012 W .9 0 0 RGB S\n");
for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".012 W 0 0 .9 RGB S\n");
for(m=1;m<11;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".028 W .9 0 0 RGB S\n");
for(m=1;m<11;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".028 W 0 0 .9 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".028 W .6 0 .6 RGB S\n");
for(m=-10;m<0;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".024 W 0 0 0 RGB S\n");
m=0; conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".024 W 0 0 0 RGB S\n");
for(m=1;m<11;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".024 W 0 0 0 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf aupower2ma.eps");
system( "open aupower2ma.pdf");
getchar(); system("killall Preview");//for mac
}
Latex generator of labels
\documentclass[12pt]{article}
\usepackage{graphicx}
\usepackage{geometry}
\usepackage{rotating}
\paperwidth 1044px
\paperheight 1036px
\topmargin -98px
\oddsidemargin -90px
\textwidth 2000px
\textheight 2000px
\newcommand \ing {\includegraphics}
\newcommand \sx {\scalebox}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\begin{document}
\begin{picture}(1030,1026) \normalsize
\put(30,20){\ing{"aupower2ma"}}
\put(16,1016){\sx{3}{$y$}}
\put(16,918){\sx{3}{$4$}}
\put(16,818){\sx{3}{$3$}}
\put(16,718){\sx{3}{$2$}}
\put(16,618){\sx{3}{$1$}}
\put(16,518){\sx{3}{$0$}}
\put(-10,418){\sx{3}{$-1$}}
\put(-10,318){\sx{3}{$-2$}}
\put(-10,218){\sx{3}{$-3$}}
\put(-10,118){\sx{3}{$-4$}}
\put(-10,18){\sx{3}{$-5$}}
\put(10,-1){\sx{3}{$-5$}}
\put(110,-1){\sx{3}{$-4$}}
\put(210,-1){\sx{3}{$-3$}}
\put(310,-1){\sx{3}{$-2$}}
\put(410,-1){\sx{3}{$-1$}}
\put(534,-1){\sx{3}{$0$}}
\put(634,-1){\sx{3}{$1$}}
\put(734,-1){\sx{3}{$2$}}
\put(834,-1){\sx{3}{$3$}}
\put(934,-1){\sx{3}{$4$}}
\put(1028,-1){\sx{3.1}{$x$}}
\put(150,522){\rot{0}{ \sx{3}{\bf cut}} \ero}
%\put(150,68){\rot{0.}{ \sx{3}{$v\!=\!0$}} \ero}
%\put(790,522){\rot{0}{ \sx{3}{$v\!=\!0$}} \ero}
\put(246,422){\rot{34}{ \sx{3}{$u\!=\!1.6$}} \ero}
\put(332,344){\rot{54}{ \sx{3}{$u\!=\!1.4$}} \ero}%%
\put(295,900){\rot{84}{ \sx{3}{$u\!=\!1.4$}} \ero}%
\put(430,882){\rot{63}{ \sx{3}{$u\!=\!1.2$}} \ero}
\put(526,845){\rot{50}{ \sx{3}{$u\!=\!1$}} \ero}
\put(490,662){\rot{-5}{ \sx{3}{$v\!=\!2$}} \ero}%%
\put(734,742){\rot{90}{ \sx{3}{$v\!=\!1$}} \ero}
\put(790,740){\rot{75}{ \sx{3}{$v\!=\!0.8$}} \ero}
\put(846,710){\rot{56}{ \sx{3}{$v\!=\!0.6$}} \ero}
\put(900,664){\rot{39}{ \sx{3}{$v\!=\!0.4$}} \ero}
\put(930,600){\rot{17}{ \sx{3}{$v\!=\!0.2$}} \ero}
\put(950,523){\rot{0}{ \sx{3}{$v\!=\!0$}} \ero}
\put(910,453){\rot{-20}{ \sx{3}{$v\!=\!-0.2$}} \ero}
\put(733,244){\rot{90}{ \sx{3}{$v\!=\!-1$}} \ero}
\put(490,388){\rot{6}{ \sx{3}{$v\!=\!-2$}} \ero}
%
\put(746,432){\rot{65}{ \sx{3}{$u\!=\!-0.2$}} \ero}
\put(778,420){\rot{57}{ \sx{3}{$u\!=\!0$}} \ero}
\put(800,390){\rot{51}{ \sx{3}{$u\!=\!0.2$}} \ero}
\put(846,358){\rot{50}{ \sx{3}{$u\!=\!0.4$}} \ero}
\put(902,308){\rot{47}{ \sx{3}{$u\!=\!0.6$}} \ero}
\put(965,227){\rot{41}{ \sx{3}{$u\!=\!0.8$}} \ero}
\end{picture}
\end{document}
References
https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas,algorithms,tables,graphics ペーパーバック – 2020/7/28
https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas, algorithms, tables, graphics. Publisher: Lambert Academic Publishing.
Keywords
«[[]]», «Abelpower», «Power function», «Superfunctions», «Superpower», «Table of superfunctions»,
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 06:10, 1 December 2018 | 1,779 × 879 (616 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following page uses this file: