Difference between revisions of "File:Logi2c4T1000.png"

From TORI
Jump to navigation Jump to search
(map)
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  +
{{oq|Logi2c4T1000.png|Original file ‎(1,772 × 1,758 pixels, file size: 1.39 MB, MIME type: image/png)}}
  +
 
[[Complex map]] of function [[LogisticSequence]] with critic value of parameter,
 
[[Complex map]] of function [[LogisticSequence]] with critic value of parameter,
  +
: $ u\!+\!\mathrm i v= \mathrm{LogisticSequence}_4(x\!+\!\mathrm i y)$
 
  +
\[
 
u\!+\!\mathrm i v= \mathrm{LogisticSequence}_4(x\!+\!\mathrm i y)
  +
\]
  +
  +
This map appears as Fig.7.5 at page 75 of book
  +
«[[Superfunctions]]»<ref>
  +
https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas,algorithms,tables,graphics - 2020/7/28
  +
</ref><ref>https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas, algorithms, tables, graphics. Publisher: [[Lambert Academic Publishing]].
  +
</ref>
  +
<br>
  +
in order to show that the [[Holomorphic extension of the logistic sequence]]
  +
<ref>
  +
https://link.springer.com/article/10.3103/S0027134910020049 <br>
  +
http://mizugadro.mydns.jp/PAPERS/2010logistie.pdf
 
D.Kouznetsov. [[Holomorphic extension of the logistic sequence]]. [[Moscow University Physics Bulletin]], 2010, No.2, p.91-98. (Russian version: p.24-31)
  +
</ref>
  +
is not chaotic.
   
 
The generators of the map are copypasted below
 
The generators of the map are copypasted below
 
==logiu==
 
==logiu==
 
// The code below should be stored as [[logiu.cin]]
 
// The code below should be stored as [[logiu.cin]]
  +
<pre>
 
 
DB LQ;
 
DB LQ;
 
DB QQ,Q2,Q3,Q4,Q5,Q6,Q7;
 
DB QQ,Q2,Q3,Q4,Q5,Q6,Q7;
Line 69: Line 88:
   
 
// Let me know if any problem with use of the routine "U".
 
// Let me know if any problem with use of the routine "U".
  +
//</pre>
 
 
==C++ generator of curves==
 
==C++ generator of curves==
 
// Routine [[logiu.cin]] above and files [[ado.cin]] and [[conto.cin]] should be loaded to the working directory in order to compile the code below
 
// Routine [[logiu.cin]] above and files [[ado.cin]] and [[conto.cin]] should be loaded to the working directory in order to compile the code below
  +
<pre>
 
 
#include <math.h>
 
#include <math.h>
 
#include <stdio.h>
 
#include <stdio.h>
Line 129: Line 148:
 
getchar(); system("killall Preview");
 
getchar(); system("killall Preview");
 
}
 
}
  +
//</pre>
 
 
// Copileft 2009, 2012 by Dmitrii Kouznetsov
 
// Copileft 2009, 2012 by Dmitrii Kouznetsov
 
==Latex generator of labels==
 
==Latex generator of labels==
 
 
% File [[logi2c4T.pdf]] should be generated with the code above in order to compile the [[Latex]] document below
 
% File [[logi2c4T.pdf]] should be generated with the code above in order to compile the [[Latex]] document below
  +
%<pre>
%<nowiki> %<br>
 
 
\documentclass[12pt]{article} %<br>
 
\documentclass[12pt]{article} %<br>
 
\usepackage{geometry} %<br>
 
\usepackage{geometry} %<br>
Line 175: Line 193:
 
\end{picture} %<br>
 
\end{picture} %<br>
 
\end{document} %<br>
 
\end{document} %<br>
  +
%</pre>
 
%</nowiki>
 
   
 
==References==
 
==References==
  +
{{ref}}
<references/>
 
  +
{{fer}}
   
  +
==Keywords==
http://tori.ils.uec.ac.jp/PAPERS/2010logistie.pdf D.Kouznetsov. Holomorphic extension of the logistic sequence. [[Moscow University Physics Bulletin]], 2010, No.2, p.91-98. (Russian version: p.24-31)
 
  +
«[[Holomorphic extension of the Logistic sequence]]»,
  +
«[[LogisitcOperator]]»,
  +
<b>«[[LogisticSequence]]»</b>,
  +
«[[Table of superfunctions]]»,
  +
«[[Transfer equation]]»,
  +
«[[Superfunction]]»,
  +
«[[Superfunctions]]»,
   
  +
[[Category:Book]]
  +
[[Category:BookMap]]
  +
[[Category:C++]]
 
[[Category:Complex map]]
 
[[Category:Complex map]]
[[Category:LogisticSequence]]
+
[[Category:Elutin Pavel Vyacheslavovich]]
  +
[[Category:Latex]]
  +
[[Category:Logistic operator]]
  +
[[Category:Logistic sequence]]
 
[[Category:Superfunction]]
 
[[Category:Superfunction]]
  +
[[Category:Superfunctions]]

Latest revision as of 14:06, 23 August 2025


Complex map of function LogisticSequence with critic value of parameter,

\[ u\!+\!\mathrm i v= \mathrm{LogisticSequence}_4(x\!+\!\mathrm i y) \]

This map appears as Fig.7.5 at page 75 of book «Superfunctions»[1][2]
in order to show that the Holomorphic extension of the logistic sequence [3] is not chaotic.

The generators of the map are copypasted below

logiu

// The code below should be stored as logiu.cin

 DB LQ;
 DB QQ,Q2,Q3,Q4,Q5,Q6,Q7;
 DB C1,C2,C3,C4,C5,C6,C7;
 DB S1,S2,S3,S4,S5,S6,S7,S8;

 void maq(DB q){
 Q=q;
 QQ=Q*Q;
 Q2=QQ;
 Q3=QQ*Q;
 Q4=QQ*QQ;
 Q5=Q4*Q;
 Q6=Q3*Q3;
 Q7=Q6*Q;
 LQ=log(Q);
 C2=1.                                                           / (1.-Q) ;
 C3=2.                                                           /((1.-Q)*(1.-Q2) );
 C4=   (5.+Q)                                                    /((1.-Q)*(1.-Q2)*(1.-Q3) );
 C5=2.*(7.+Q*(3.+Q*2.))                                          /((1.-Q)*(1.-Q2)*(1.-Q3)*(1.-Q4) );
 C6=2.*(21.+Q*(14.+Q*(14.+Q*( 8.+Q*3.))))                        /((1.-Q)*(1.-Q2)*(1.-Q3)*(1.-Q4)*(1.-Q5));
 C7=4.*(33.+Q*(30.+Q*(37.+Q*(32.+Q*(27.+Q*(12.+Q*(8.+Q)))))))    /((1.-Q)*(1.-Q2)*(1.-Q3)*(1.-Q4)*(1.-Q5)*(1.-Q6));
 S1=1.;
 S2=1.                                                           / (Q-1.);
 S3=2.*Q                                                         /((Q-1.)*(Q2-1.));
 S4=   Q *(1.+5.*Q*Q)                                            /((Q-1.)*(Q2-1.)*(Q3-1.) );
 S5=2.*Q3*(3.+Q*(2.+QQ*7.))                                      /((Q-1.)*(Q2-1.)*(Q3-1.)*(Q4-1.) );
 S6=2.*Q3*(1.+Q*(3.+QQ*(14.+Q*(14.+Q*(7.+QQ*21)))))              /((Q-1.)*(Q2-1.)*(Q3-1.)*(Q4-1.)*(Q5-1.));
 S7=4.*Q4*(1.+Q*(5.+Q*(15.+Q*(12.+Q*(8.+Q*(30.+Q*(37.+Q*(27.+Q*(12.+QQ*(33.))))))))))
                                                                /((Q-1.)*(Q2-1.)*(Q3-1.)*(Q4-1.)*(Q5-1.)*(Q6-1.));
 S8=Q4*(1.+QQ*(5.+Q*(60.+Q*(69.+Q*(89.+Q*(162.+Q*(415.+Q*(495.+Q*(531.+Q*(267.+Q*(630.+Q*(705.+Q*(621.+Q*(396+Q*(165.+Q*429)
              )     )      )      )      )       )       )       )       )       )       )       )       )
        )                                                       /((Q-1.)*(Q2-1.)*(Q3-1.)*(Q4-1.)*(Q5-1.)*(Q6-1.)*(Q7-1.));
 ;
 printf("maq: Q=%9.6f\n",Q);}

 z_type J(z_type z){ return .5-sqrt(.25-z/Q); }
 z_type H(z_type z){ return Q*z*(1.-z); }
 z_type f(z_type z){z_type e;e=exp(LQ*z);return e*(1.+e*(C2+e*(C3+e*(C4+e*(C5+e*(C6+e*C7))))));  }
 z_type F(z_type z){     if(Re(z)>-6.) return H(F(z-1.));   return f(z);}
 z_type e(z_type z){                     return z*(1.+z*(S2+z*(S3+z*(S4+z*(S5+z*(S6+z*(S7+z* S8)))))));}
 z_type E(z_type z){     if(abs(z)>.1) return  E(J(z))+1.;
                         return log(e(z))/LQ;} 
 //#include "efjh.cin"
 z_type u(z_type z){
 DB q1 =Q-1.;
 DB q2 =Q-2.;
 DB q3 =Q-3.;
 DB q2L=log(q2);
 DB U0=q1/Q;
 DB U1=1.;
 DB U2=-Q/(q1*q2);
 DB U3=-2.*QQ/(q1*q1*q2*q2*q3);
 DB U4=-2.*Q3*(Q-7.)/(q1*q1*q1*q2*q2*q2*(-21.+Q*(22.+Q*(-8.+Q))) );
 z_type e=-exp(z*q2L)*cos(M_PI*z);
 //return U0+e;
 //return U0+e*(1.+e*(U2)); 
 //return U0+e*(U1+e*(U2+e*U3)); 
 return U0+e*(U1+e*(U2+e*(U3+e*U4))); 
 }

 z_type U(z_type z){     if(Re(z)+3*fabs(Im(z))>-6.) return H(U(z-1.));   return u(z);}

// Let me know if any problem with use of the routine "U".
//

C++ generator of curves

// Routine logiu.cin above and files ado.cin and conto.cin should be loaded to the working directory in order to compile the code below

 #include <math.h>
 #include <stdio.h>
 #include <stdlib.h>
 #define DB double
 #define DO(x,y) for(x=0;x<y;x++)
 using namespace std;
 #include <complex>
 typedef complex<double> z_type;
 #define Re(x) x.real()
 #define Im(x) x.imag()
 #define I z_type(0.,1.)
 #include "conto.cin"
 #include "efjh.cin"
 main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
  int M=408,M1=M+1;
  int N=602,N1=N+1;
 DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
 char v[M1*N1]; // v is working array
 FILE *o;o=fopen("logi2c4a.eps","w");ado(o,126,124);
 fprintf(o,"62 62 translate\n 20 20 scale\n");
 DO(m,M1) X[m]=-3.01+.015*(m-.5);
 DO(n,300) Y[n]=-3.+.01*n;
          Y[300]=-0.002;
          Y[301]= 0.002;
 for(n=302;n<N1;n++) Y[n]=-3.+.01*(n-1);
 fprintf(o,"1 setlinejoin 2 setlinecap\n");  //p=.8;q=.4;
 for(m=-3;m<4;m++){if(m==0){M(m,-3.04)L(m,3.04)} else{M(m,-3)L(m,3)}}
 for(n=-3;n<4;n++){        M(  -3  ,n)L(3,n)}
 fprintf(o,".008 W 0 0 0 RGB S\n");
 maq(4.);
 DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;}
 DO(m,M1){x=X[m]; //printf("%5.2f\n",x);
 DO(n,N1){y=Y[n]; z=z_type(x,y);        
   c=F(z);
   p=Re(c);q=Im(c);     
   if(p>-49 && p<49)    {g[m*N1+n]=p;}
   if(q>-49 && q<49)    {f[m*N1+n]=q;}
       }}
 fprintf(o,"1 setlinejoin 1 setlinecap\n");  //p=.8;q=.4;
 p=2.;q=.5;
 //#include"plof.cin"
 for(m=-2;m<2;m++) 
 for(n=1;n<10;n+=1)conto(o,f,w,v,X,Y,M,N, (m+.1*n),-q, q);fprintf(o,".005 W 0 .6 0 RGB S\n");
 for(m=0;m<2;m++) 
 for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q);fprintf(o,".005 W .9 0 0 RGB S\n");
 for(m=0;m<2;m++) 
 for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q);fprintf(o,".005 W 0 0 .9 RGB S\n");
 for(m= 1;m<5;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p);   fprintf(o,".02 W .9 0 0 RGB S\n");
 for(m= 1;m<5;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p);   fprintf(o,".02 W 0 0 .9 RGB S\n");
 for(m=-4;m<5;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p);   fprintf(o,".02 W 0 0 0 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, (0.  ),-p,p);   fprintf(o,".02 W .6 0 .6 RGB S\n");
 fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
 system("epstopdf logi2c4a.eps"); // for linux
 system(    "open logi2c4a.pdf"); // for mac
 getchar(); system("killall Preview");
 }
//

// Copileft 2009, 2012 by Dmitrii Kouznetsov

Latex generator of labels

% File logi2c4T.pdf should be generated with the code above in order to compile the Latex document below

%
\documentclass[12pt]{article} %<br>
\usepackage{geometry} %<br>
\usepackage{graphics} %<br>
\usepackage{rotating} %<br>
\paperwidth 128pt %<br>
\paperheight 127pt %<br>
\topmargin -104pt %<br>
\oddsidemargin -90pt %<br>
\newcommand \sx {\scalebox} %<br>
\newcommand \ing \includegraphics %<br>
\newcommand \rot {\begin{rotate}} %<br>
\newcommand \ero {\end{rotate}} %<br>
\begin{document} %<br>
\newcommand \axes { %<br>
\put(  2,124){\sx{.5}{$y$}} %<br>
\put(  2,105){\sx{.5}{$2$}} %<br>
\put(  2,85){\sx{.5}{$1$}} %<br>
\put(  2, 65){\sx{.5}{$0$}} %<br>
\put(-.8, 45){\sx{.5}{$-\!1$}} %<br>
\put(-.8, 25){\sx{.5}{$-\!2$}} %<br>
\put( 22,  1){\sx{.5}{$-2$}} %<br>
\put( 42,  1){\sx{.5}{$-\!1$}} %<br>
\put( 65,  1){\sx{.5}{$0$}} %<br>
\put( 85,  1){\sx{.5}{$1$}} %<br>
\put(105,  1){\sx{.5}{$2$}} %<br>
\put(124.6,  1){\sx{.5}{$x$}} %<br>
} %<br>
\begin{picture}(122,122)  \put( 4, 4){\ing{logi2c4a}} %<br>
\put(7,110){\rot{ 0.}\sx{.6}{$v\!=\!0$}\ero} %<br>
\put(7, 87.4){\rot{ 0.}\sx{.6}{$u\!=\!0$}\ero} %<br>
\put(7, 64.5){\rot{ 0.}\sx{.6}{$v\!=\!0$}\ero} %<br>
\put(7, 41.6){\rot{ 0.}\sx{.6}{$u\!=\!0$}\ero} %<br>
\put(7,  19){\rot{ 0.}\sx{.6}{$v\!=\!0$}\ero} %<br>
\put(34,70){\rot{50}\sx{.5}{$u\!=\!0.1$}\ero} %<br>
\put(44,68){\rot{58}\sx{.5}{$u\!=\!0.2$}\ero} %<br>
\put(56,68){\sx{.5}{$v\!=\!0.1$}} %<br>
\put(53,61){\sx{.5}{$v\!=\!-0.1$}} %<br>
\axes  %<br>
\end{picture} %<br>
\end{document} %<br>
%

References

  1. https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas,algorithms,tables,graphics - 2020/7/28
  2. https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas, algorithms, tables, graphics. Publisher: Lambert Academic Publishing.
  3. https://link.springer.com/article/10.3103/S0027134910020049
    http://mizugadro.mydns.jp/PAPERS/2010logistie.pdf D.Kouznetsov. Holomorphic extension of the logistic sequence. Moscow University Physics Bulletin, 2010, No.2, p.91-98. (Russian version: p.24-31)

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current17:50, 20 June 2013Thumbnail for version as of 17:50, 20 June 20131,772 × 1,758 (1.39 MB)Maintenance script (talk | contribs)Importing image file

The following page uses this file:

Metadata