Difference between revisions of "File:Logi2c4T1000.png"
(map) |
|||
| (3 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
| + | {{oq|Logi2c4T1000.png|Original file (1,772 × 1,758 pixels, file size: 1.39 MB, MIME type: image/png)}} |
||
| + | |||
[[Complex map]] of function [[LogisticSequence]] with critic value of parameter, |
[[Complex map]] of function [[LogisticSequence]] with critic value of parameter, |
||
| + | |||
| ⚫ | |||
| + | \[ |
||
| ⚫ | |||
| + | \] |
||
| + | |||
| + | This map appears as Fig.7.5 at page 75 of book |
||
| + | «[[Superfunctions]]»<ref> |
||
| + | https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas,algorithms,tables,graphics - 2020/7/28 |
||
| + | </ref><ref>https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas, algorithms, tables, graphics. Publisher: [[Lambert Academic Publishing]]. |
||
| + | </ref> |
||
| + | <br> |
||
| + | in order to show that the [[Holomorphic extension of the logistic sequence]] |
||
| + | <ref> |
||
| + | https://link.springer.com/article/10.3103/S0027134910020049 <br> |
||
| + | http://mizugadro.mydns.jp/PAPERS/2010logistie.pdf |
||
| ⚫ | |||
| + | </ref> |
||
| + | is not chaotic. |
||
The generators of the map are copypasted below |
The generators of the map are copypasted below |
||
==logiu== |
==logiu== |
||
// The code below should be stored as [[logiu.cin]] |
// The code below should be stored as [[logiu.cin]] |
||
| + | <pre> |
||
| − | |||
DB LQ; |
DB LQ; |
||
DB QQ,Q2,Q3,Q4,Q5,Q6,Q7; |
DB QQ,Q2,Q3,Q4,Q5,Q6,Q7; |
||
| Line 69: | Line 88: | ||
// Let me know if any problem with use of the routine "U". |
// Let me know if any problem with use of the routine "U". |
||
| + | //</pre> |
||
| − | |||
==C++ generator of curves== |
==C++ generator of curves== |
||
// Routine [[logiu.cin]] above and files [[ado.cin]] and [[conto.cin]] should be loaded to the working directory in order to compile the code below |
// Routine [[logiu.cin]] above and files [[ado.cin]] and [[conto.cin]] should be loaded to the working directory in order to compile the code below |
||
| + | <pre> |
||
| − | |||
#include <math.h> |
#include <math.h> |
||
#include <stdio.h> |
#include <stdio.h> |
||
| Line 129: | Line 148: | ||
getchar(); system("killall Preview"); |
getchar(); system("killall Preview"); |
||
} |
} |
||
| + | //</pre> |
||
| − | |||
// Copileft 2009, 2012 by Dmitrii Kouznetsov |
// Copileft 2009, 2012 by Dmitrii Kouznetsov |
||
==Latex generator of labels== |
==Latex generator of labels== |
||
| − | |||
% File [[logi2c4T.pdf]] should be generated with the code above in order to compile the [[Latex]] document below |
% File [[logi2c4T.pdf]] should be generated with the code above in order to compile the [[Latex]] document below |
||
| + | %<pre> |
||
| − | %<nowiki> %<br> |
||
\documentclass[12pt]{article} %<br> |
\documentclass[12pt]{article} %<br> |
||
\usepackage{geometry} %<br> |
\usepackage{geometry} %<br> |
||
| Line 175: | Line 193: | ||
\end{picture} %<br> |
\end{picture} %<br> |
||
\end{document} %<br> |
\end{document} %<br> |
||
| + | %</pre> |
||
| − | |||
| − | %</nowiki> |
||
==References== |
==References== |
||
| + | {{ref}} |
||
| − | <references/> |
||
| + | {{fer}} |
||
| + | ==Keywords== |
||
| ⚫ | |||
| + | «[[Holomorphic extension of the Logistic sequence]]», |
||
| + | «[[LogisitcOperator]]», |
||
| + | <b>«[[LogisticSequence]]»</b>, |
||
| + | «[[Table of superfunctions]]», |
||
| + | «[[Transfer equation]]», |
||
| + | «[[Superfunction]]», |
||
| + | «[[Superfunctions]]», |
||
| + | [[Category:Book]] |
||
| + | [[Category:BookMap]] |
||
| + | [[Category:C++]] |
||
[[Category:Complex map]] |
[[Category:Complex map]] |
||
| − | [[Category: |
+ | [[Category:Elutin Pavel Vyacheslavovich]] |
| + | [[Category:Latex]] |
||
| + | [[Category:Logistic operator]] |
||
| + | [[Category:Logistic sequence]] |
||
[[Category:Superfunction]] |
[[Category:Superfunction]] |
||
| + | [[Category:Superfunctions]] |
||
Latest revision as of 14:06, 23 August 2025
Complex map of function LogisticSequence with critic value of parameter,
\[ u\!+\!\mathrm i v= \mathrm{LogisticSequence}_4(x\!+\!\mathrm i y) \]
This map appears as Fig.7.5 at page 75 of book
«Superfunctions»[1][2]
in order to show that the Holomorphic extension of the logistic sequence
[3]
is not chaotic.
The generators of the map are copypasted below
logiu
// The code below should be stored as logiu.cin
DB LQ;
DB QQ,Q2,Q3,Q4,Q5,Q6,Q7;
DB C1,C2,C3,C4,C5,C6,C7;
DB S1,S2,S3,S4,S5,S6,S7,S8;
void maq(DB q){
Q=q;
QQ=Q*Q;
Q2=QQ;
Q3=QQ*Q;
Q4=QQ*QQ;
Q5=Q4*Q;
Q6=Q3*Q3;
Q7=Q6*Q;
LQ=log(Q);
C2=1. / (1.-Q) ;
C3=2. /((1.-Q)*(1.-Q2) );
C4= (5.+Q) /((1.-Q)*(1.-Q2)*(1.-Q3) );
C5=2.*(7.+Q*(3.+Q*2.)) /((1.-Q)*(1.-Q2)*(1.-Q3)*(1.-Q4) );
C6=2.*(21.+Q*(14.+Q*(14.+Q*( 8.+Q*3.)))) /((1.-Q)*(1.-Q2)*(1.-Q3)*(1.-Q4)*(1.-Q5));
C7=4.*(33.+Q*(30.+Q*(37.+Q*(32.+Q*(27.+Q*(12.+Q*(8.+Q))))))) /((1.-Q)*(1.-Q2)*(1.-Q3)*(1.-Q4)*(1.-Q5)*(1.-Q6));
S1=1.;
S2=1. / (Q-1.);
S3=2.*Q /((Q-1.)*(Q2-1.));
S4= Q *(1.+5.*Q*Q) /((Q-1.)*(Q2-1.)*(Q3-1.) );
S5=2.*Q3*(3.+Q*(2.+QQ*7.)) /((Q-1.)*(Q2-1.)*(Q3-1.)*(Q4-1.) );
S6=2.*Q3*(1.+Q*(3.+QQ*(14.+Q*(14.+Q*(7.+QQ*21))))) /((Q-1.)*(Q2-1.)*(Q3-1.)*(Q4-1.)*(Q5-1.));
S7=4.*Q4*(1.+Q*(5.+Q*(15.+Q*(12.+Q*(8.+Q*(30.+Q*(37.+Q*(27.+Q*(12.+QQ*(33.))))))))))
/((Q-1.)*(Q2-1.)*(Q3-1.)*(Q4-1.)*(Q5-1.)*(Q6-1.));
S8=Q4*(1.+QQ*(5.+Q*(60.+Q*(69.+Q*(89.+Q*(162.+Q*(415.+Q*(495.+Q*(531.+Q*(267.+Q*(630.+Q*(705.+Q*(621.+Q*(396+Q*(165.+Q*429)
) ) ) ) ) ) ) ) ) ) ) ) )
) /((Q-1.)*(Q2-1.)*(Q3-1.)*(Q4-1.)*(Q5-1.)*(Q6-1.)*(Q7-1.));
;
printf("maq: Q=%9.6f\n",Q);}
z_type J(z_type z){ return .5-sqrt(.25-z/Q); }
z_type H(z_type z){ return Q*z*(1.-z); }
z_type f(z_type z){z_type e;e=exp(LQ*z);return e*(1.+e*(C2+e*(C3+e*(C4+e*(C5+e*(C6+e*C7)))))); }
z_type F(z_type z){ if(Re(z)>-6.) return H(F(z-1.)); return f(z);}
z_type e(z_type z){ return z*(1.+z*(S2+z*(S3+z*(S4+z*(S5+z*(S6+z*(S7+z* S8)))))));}
z_type E(z_type z){ if(abs(z)>.1) return E(J(z))+1.;
return log(e(z))/LQ;}
//#include "efjh.cin"
z_type u(z_type z){
DB q1 =Q-1.;
DB q2 =Q-2.;
DB q3 =Q-3.;
DB q2L=log(q2);
DB U0=q1/Q;
DB U1=1.;
DB U2=-Q/(q1*q2);
DB U3=-2.*QQ/(q1*q1*q2*q2*q3);
DB U4=-2.*Q3*(Q-7.)/(q1*q1*q1*q2*q2*q2*(-21.+Q*(22.+Q*(-8.+Q))) );
z_type e=-exp(z*q2L)*cos(M_PI*z);
//return U0+e;
//return U0+e*(1.+e*(U2));
//return U0+e*(U1+e*(U2+e*U3));
return U0+e*(U1+e*(U2+e*(U3+e*U4)));
}
z_type U(z_type z){ if(Re(z)+3*fabs(Im(z))>-6.) return H(U(z-1.)); return u(z);}
// Let me know if any problem with use of the routine "U".
//
C++ generator of curves
// Routine logiu.cin above and files ado.cin and conto.cin should be loaded to the working directory in order to compile the code below
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
using namespace std;
#include <complex>
typedef complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
#include "efjh.cin"
main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
int M=408,M1=M+1;
int N=602,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
FILE *o;o=fopen("logi2c4a.eps","w");ado(o,126,124);
fprintf(o,"62 62 translate\n 20 20 scale\n");
DO(m,M1) X[m]=-3.01+.015*(m-.5);
DO(n,300) Y[n]=-3.+.01*n;
Y[300]=-0.002;
Y[301]= 0.002;
for(n=302;n<N1;n++) Y[n]=-3.+.01*(n-1);
fprintf(o,"1 setlinejoin 2 setlinecap\n"); //p=.8;q=.4;
for(m=-3;m<4;m++){if(m==0){M(m,-3.04)L(m,3.04)} else{M(m,-3)L(m,3)}}
for(n=-3;n<4;n++){ M( -3 ,n)L(3,n)}
fprintf(o,".008 W 0 0 0 RGB S\n");
maq(4.);
DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;}
DO(m,M1){x=X[m]; //printf("%5.2f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y);
c=F(z);
p=Re(c);q=Im(c);
if(p>-49 && p<49) {g[m*N1+n]=p;}
if(q>-49 && q<49) {f[m*N1+n]=q;}
}}
fprintf(o,"1 setlinejoin 1 setlinecap\n"); //p=.8;q=.4;
p=2.;q=.5;
//#include"plof.cin"
for(m=-2;m<2;m++)
for(n=1;n<10;n+=1)conto(o,f,w,v,X,Y,M,N, (m+.1*n),-q, q);fprintf(o,".005 W 0 .6 0 RGB S\n");
for(m=0;m<2;m++)
for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q);fprintf(o,".005 W .9 0 0 RGB S\n");
for(m=0;m<2;m++)
for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q);fprintf(o,".005 W 0 0 .9 RGB S\n");
for(m= 1;m<5;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".02 W .9 0 0 RGB S\n");
for(m= 1;m<5;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".02 W 0 0 .9 RGB S\n");
for(m=-4;m<5;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".02 W 0 0 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".02 W .6 0 .6 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf logi2c4a.eps"); // for linux
system( "open logi2c4a.pdf"); // for mac
getchar(); system("killall Preview");
}
//
// Copileft 2009, 2012 by Dmitrii Kouznetsov
Latex generator of labels
% File logi2c4T.pdf should be generated with the code above in order to compile the Latex document below
%\documentclass[12pt]{article} %<br>
\usepackage{geometry} %<br>
\usepackage{graphics} %<br>
\usepackage{rotating} %<br>
\paperwidth 128pt %<br>
\paperheight 127pt %<br>
\topmargin -104pt %<br>
\oddsidemargin -90pt %<br>
\newcommand \sx {\scalebox} %<br>
\newcommand \ing \includegraphics %<br>
\newcommand \rot {\begin{rotate}} %<br>
\newcommand \ero {\end{rotate}} %<br>
\begin{document} %<br>
\newcommand \axes { %<br>
\put( 2,124){\sx{.5}{$y$}} %<br>
\put( 2,105){\sx{.5}{$2$}} %<br>
\put( 2,85){\sx{.5}{$1$}} %<br>
\put( 2, 65){\sx{.5}{$0$}} %<br>
\put(-.8, 45){\sx{.5}{$-\!1$}} %<br>
\put(-.8, 25){\sx{.5}{$-\!2$}} %<br>
\put( 22, 1){\sx{.5}{$-2$}} %<br>
\put( 42, 1){\sx{.5}{$-\!1$}} %<br>
\put( 65, 1){\sx{.5}{$0$}} %<br>
\put( 85, 1){\sx{.5}{$1$}} %<br>
\put(105, 1){\sx{.5}{$2$}} %<br>
\put(124.6, 1){\sx{.5}{$x$}} %<br>
} %<br>
\begin{picture}(122,122) \put( 4, 4){\ing{logi2c4a}} %<br>
\put(7,110){\rot{ 0.}\sx{.6}{$v\!=\!0$}\ero} %<br>
\put(7, 87.4){\rot{ 0.}\sx{.6}{$u\!=\!0$}\ero} %<br>
\put(7, 64.5){\rot{ 0.}\sx{.6}{$v\!=\!0$}\ero} %<br>
\put(7, 41.6){\rot{ 0.}\sx{.6}{$u\!=\!0$}\ero} %<br>
\put(7, 19){\rot{ 0.}\sx{.6}{$v\!=\!0$}\ero} %<br>
\put(34,70){\rot{50}\sx{.5}{$u\!=\!0.1$}\ero} %<br>
\put(44,68){\rot{58}\sx{.5}{$u\!=\!0.2$}\ero} %<br>
\put(56,68){\sx{.5}{$v\!=\!0.1$}} %<br>
\put(53,61){\sx{.5}{$v\!=\!-0.1$}} %<br>
\axes %<br>
\end{picture} %<br>
\end{document} %<br>
%
References
- ↑ https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas,algorithms,tables,graphics - 2020/7/28
- ↑ https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas, algorithms, tables, graphics. Publisher: Lambert Academic Publishing.
- ↑
https://link.springer.com/article/10.3103/S0027134910020049
http://mizugadro.mydns.jp/PAPERS/2010logistie.pdf D.Kouznetsov. Holomorphic extension of the logistic sequence. Moscow University Physics Bulletin, 2010, No.2, p.91-98. (Russian version: p.24-31)
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 17:50, 20 June 2013 | 1,772 × 1,758 (1.39 MB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following page uses this file: