Difference between revisions of "File:ZexIteT.jpg"
($ -> \( ; description ; refs ; pre ; keywords) |
m (it is not a complex map!) |
||
| Line 180: | Line 180: | ||
[[Category:BookPlotE]] |
[[Category:BookPlotE]] |
||
[[Category:C++]] |
[[Category:C++]] |
||
| − | [[Category:Complex map]] |
||
[[Category:Exotic iteration]] |
[[Category:Exotic iteration]] |
||
[[Category:Explicit plot]] |
[[Category:Explicit plot]] |
||
Latest revision as of 18:15, 26 August 2025
Explicit plot of iterations of function Zex
\( y=\mathrm{zex}^n(x)\)
for various number $n$ of iterates. Here, \(\ \mathrm{zex}(z)\!=\!z\exp(z)\ \). The non-integer iterates are implemented through the superfunction of zex and its abelfunction, named SuZex and AuZex, as follows:
\( \mathrm{zex}^n(x)=\mathrm{SuZex}\Big(n+\mathrm{AuZex}(x)\Big) \)
This plot appears as Fig.11.8 at page 147 of book «Superfunctions», 2020
[1][2]
as a verification, a support of the pretentious claim that
with formalism of Superfunctions,
the Author can iterate any growing real-holomorphic function,
and the number \(n\) of the iterate has no need to be integer.
C++ generator of curves
// Files ado.cin, Tania.cin, LambertW.cin, SuZex.cin, AuZex.cin should be loaded to the working directory in order to compile the code below.
//
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
using namespace std;
#include<complex>
typedef complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "Tania.cin" // need for LambertW
#include "LambertW.cin" // need for AuZex
#include "SuZex.cin"
#include "AuZex.cin"
#include "ado.cin"
#define M(x,y) fprintf(o,"%6.4f %6.4f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%6.4f %6.4f L\n",0.+x,0.+y);
main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; FILE *o;o=fopen("ZexIte.eps","w"); ado(o,1204,1204);
fprintf(o,"2 2 translate\n 100 100 scale\n");
fprintf(o,"1 setlinejoin 2 setlinecap\n");
for(n=0;n<13;n++) {M(0,n)L(12,n)}
for(m=0;m<13;m++) {M(m,0)L(m,12)}
M(M_E,0)L(M_E,1) M(0,M_E)L(1,M_E) fprintf(o,".01 W S\n");
DO(m,700){x=.01 +.02*m; y=Re(LambertW(LambertW(x)));if(m==0) M(x,y) else L(x,y) if(x>12.03||y>12.03) break;} fprintf(o,".033 W 1 0 1 RGB S\n");
DO(m,700){x=.01 +.02*m; y=Re(LambertW(x));if(m==0) M(x,y) else L(x,y) if(x>12.03||y>12.03) break;} fprintf(o,".04 W 1 0 1 RGB S\n");
M(0,0) L(12.03,12.03) fprintf(o,".03 W 0 1 0 RGB S\n");
DO(m,700){x=.01 +.02*m; y=Re(zex(x)); if(m==0) M(x,y) else L(x,y) if(x>12.03||y>12.03) break;} fprintf(o,".04 W 0 1 0 RGB S\n");
DO(m,700){x=.01 +.02*m; y=Re(zex(zex(x))); if(m==0) M(x,y) else L(x,y) if(x>12.03||y>12.03) break;} fprintf(o,".033 W 0 1 0 RGB S\n");
for(n=-10;n<11;n++){
DO(m,700){x=.01 +.02*m; y=Re(auzex(x)); y=Re(suzex(.1*n+y)); if(m==0) M(x,y) else L(x,y) if(x>12.03||y>12.03) break;}
fprintf(o,".023 W 0 0 0 RGB S\n");
}
fprintf(o,"showpage\n"); fprintf(o,"%c%cTrailer\n",'%','%'); fclose(o);
system("epstopdf ZexIte.eps");
system( "open ZexIte.pdf"); //for macintosh
getchar(); system("killall Preview"); // For macintosh
}
Latex generator of labels
%% file ZexIte.pdf should be generated with the code above in order to compile the Latex document below.
% Copyleft 2012 by Dmitrii Kouznetsov <br> %
\documentclass[12pt]{article} % <br>
\usepackage{geometry} % <br>
\usepackage{graphicx} % <br>
\usepackage{rotating} % <br>
\paperwidth 1208pt % <br>
\paperheight 1208pt % <br>
\topmargin -103pt % <br>
\oddsidemargin -73pt % <br>
\textwidth 1404pt % <br>
\textheight 1404pt % <br>
\pagestyle {empty} % <br>
\newcommand \sx {\scalebox} % <br>
\newcommand \rot {\begin{rotate}} % <br>
\newcommand \ero {\end{rotate}} % <br>
\newcommand \ing {\includegraphics} % <br>
\parindent 0pt% <br>
\pagestyle{empty} % <br>
\begin{document} % <br>
\begin{picture}(1202,1202) % <br>
%\put(10,10){\ing{IterPowPlot}} % <br>
%\put(10,10){\ing{IterEq2plot}} % <br>
\put(0,0){\ing{ZexIte}} % <br>
\put(11,1184){\sx{4.4}{$y$}} % <br>
\put(04,1090){\sx{4}{$11$}} % <br>
\put(04,990){\sx{4}{$10$}} % <br>
\put(11,890){\sx{4}{$9$}} % <br>
\put(11,790){\sx{4}{$8$}} % <br>
\put(11,690){\sx{4}{$7$}} % <br>
\put(11,590){\sx{4}{$6$}} % <br>
\put(11,490){\sx{4}{$5$}} % <br>
\put(11,390){\sx{4}{$4$}} % <br>
\put(11,290){\sx{4}{$3$}} % <br>
\put(11,190){\sx{4}{$2$}} % <br>
\put(11,090){\sx{4}{$1$}} % <br>
% <br>
\put(91,6){\sx{4}{$1$}} % <br>
\put(191,6){\sx{4}{$2$}} % <br>
\put(291,6){\sx{4}{$3$}} % <br>
\put(391,6){\sx{4}{$4$}} % <br>
\put(492,6){\sx{4}{$5$}} % <br>
\put(592,6){\sx{4}{$6$}} % <br>
\put(693,6){\sx{4}{$7$}} % <br>
\put(794,6){\sx{4}{$8$}} % <br>
\put(894,6){\sx{4}{$9$}} % <br>
\put(982,6){\sx{4}{$10$}} % <br>
\put(1082,6){\sx{4}{$11$}} % <br>
\put(1180,6){\sx{4.4}{$x$}} % <br>
% <br>
\put(116,1058){\sx{5}{\rot{88}$n\!=\!2$\ero}} % <br>
\put(182,1058){\sx{5}{\rot{88}$n\!=\!1$\ero}} % <br>
\put(141,706){\sx{4.5}{\rot{86}$y\!=\!\mathrm{zex}(x)$\ero}} % <br>
%
\put(512,1030){\sx{5}{\rot{72}$n\!=\!0.3$\ero}} % <br>
\put(629,1032){\sx{5}{\rot{64}$n\!=\!0.2$\ero}} % <br>
\put(804,1037){\sx{5}{\rot{56}$n\!=\!0.1$\ero}} % <br>
% <br>
\put(1072,1052){\sx{5}{\rot{44}$n\!=\!0$\ero}} % <br>
\put(772,752){\sx{5}{\rot{44}$y\!=\!x$\ero}} % <br>
% <br>
\put(1028,762){\sx{5}{\rot{32}$n\!=\!-0.1$\ero}} % <br>
\put(1014,590){\sx{5}{\rot{23}$n\!=\!-0.2$\ero}} % <br>
\put(1006,470){\sx{5}{\rot{17}$n\!=\!-0.3$\ero}} % <br>
%
\put(510,108){\sx{4.3}{\rot{3}$y\!=\!\mathrm{LambertW}(x)$\ero}} % <br>
\put(1010,142){\sx{5}{\rot{2}$n\!=\!-1$\ero}} % <br>
\put(1010,83){\sx{5}{\rot{1}$n\!=\!-2$\ero}} % <br>
%<br>
\end{picture} % <br>
\end{document} % <br>
References
- ↑ https://www.amazon.com/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. Superfunctions. Lambert Academic Publishing, 2020. Tools for evaluation of superfunctions, abelfunctions and non-integer iterates of holomorphic functions are collected. For a given transferfunction T, the superfunction is solution F of the transfer equation F(z+1)=T(F(z)) . The abelfunction is inverse of F. In particular, superfunctions of factorial, exp, sin are suggested. The Holomorphic extensions of the logistic sequence and those of the Ackermann functions are considered. Among ackermanns, the tetration (mainly to the base b>1) and natural pentation (to base b=e) are presented. The efficient algorithm for the evaluation of superfunctions and abelfunctions are described. The graphics and complex maps are plotted. The possible applications are discussed. Superfunctions significantly extend the set of functions, that can be used in scientific research and technical design.
- ↑ https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov. Superfunctions. Lambert Academic Publishing, 2020.
Keywords
«Abelfunction», «ArcLambertW», «ArcZex», «AuZex», «Exotic iteration», «Fixed point», «Iterate», «Iteration», «LambertW», «ProductLog», «Superfunction», «Superfunctions», «SuZex», «Transfer function», «Transferfunction», «Zex»,
«Суперфункции»,
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 17:50, 20 June 2013 | 2,508 × 2,508 (973 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following 2 pages use this file: