Difference between revisions of "File:Tetsheldonmap03.png"
($ -> \( ; refs ; pre ; keywords) |
|||
| (2 intermediate revisions by one other user not shown) | |||
| Line 1: | Line 1: | ||
| + | {{oq|Tetsheldonmap03.png|Original file (2,549 × 702 pixels, file size: 982 KB, MIME type: image/png)}} |
||
| − | [[Complex map]] of [[Tetration to Sheldon base]] |
||
| + | Top picture of Figure 18.3 at page 250 of book «[[Superfunctions]]» |
||
| − | Copy from the duplicate of TORI |
||
| + | <ref> |
||
| + | https://www.amazon.co.jp/-/en/Dmitrii-Kouznetsov/dp/6202672862 <br> |
||
| + | https://www.morebooks.de/shop-ui/shop/product/978-620-2-67286-3 <br> |
||
| + | https://mizugadro.mydns.jp/BOOK/468.pdf <br> |
||
| + | D.Kouznetov. [[Superfunctions]]. [[Lambert Academic Publishing]], 2020. |
||
| + | </ref>: |
||
| + | [[Complex map]] of [[tetration to Sheldon base]] |
||
| − | [[Category:Tetration]] |
||
| + | \(b=s=1.52598338517+0.0178411853321 i \). |
||
| − | [[Category:Sheldon base]] |
||
| + | |||
| + | Function \(f=\mathrm{tet}_s(x+\mathrm i y)\) is shown in the \(x,y\) plane |
||
| + | with levels \(u=\Re(f)=\mathrm{const}\) |
||
| + | and levels \(v=\Im(f)=\mathrm{const}\); |
||
| + | thick lines correspond ot the integer values. |
||
| + | |||
| + | This map appears also at page 257 as "Рис.18.3" of the Russian version «[[Суперфункции]]» |
||
| + | of the same book <ref> |
||
| + | https://mizugadro.mydns.jp/BOOK/202.pdf <br> |
||
| + | Дмитрий Кузнецов. [[Суперфункции]]. [[Lambert Academic Publishing]], 2014 |
||
| + | </ref> |
||
| + | |||
| + | ==[[C++]] generator of map== |
||
| + | /* Files |
||
| + | [[ado.cin]], |
||
| + | [[conto.cin]], |
||
| + | [[filog.cin]], |
||
| + | [[GLxw2048.inc]], |
||
| + | [[TetSheldonIma.inc]] |
||
| + | should be loaded in order to compile the code below */ |
||
| + | <pre> |
||
| + | #include <math.h> |
||
| + | #include <stdio.h> |
||
| + | #include <stdlib.h> |
||
| + | #define DB double |
||
| + | #define DO(x,y) for(x=0;x<y;x++) |
||
| + | //using namespace std; |
||
| + | #include <complex> |
||
| + | typedef std::complex<double> z_type; |
||
| + | // typedef complex<double> z_type; |
||
| + | #define Re(x) x.real() |
||
| + | #define Im(x) x.imag() |
||
| + | #define I z_type(0.,1.) |
||
| + | #include "conto.cin" |
||
| + | #include "filog.cin" |
||
| + | z_type b=z_type( 1.5259833851700000, 0.0178411853321000); |
||
| + | z_type a=log(b); |
||
| + | z_type Zo=Filog(a); |
||
| + | z_type Zc=conj(Filog(conj(a))); |
||
| + | DB A=32.; |
||
| + | z_type tetb(z_type z){ int k; DB t; z_type c, cu,cd; |
||
| + | #include "GLxw2048.inc" |
||
| + | int K=2048; |
||
| + | //#include "ima6.inc" |
||
| + | #include "TetSheldonIma.inc" |
||
| + | z_type E[2048],G[2048]; |
||
| + | DO(k,K){c=F[k]; E[k]=log(c)/a; G[k]=exp(a*c);} |
||
| + | c=0.; |
||
| + | z+=z_type(0.1196573712872846, 0.1299776198056910); |
||
| + | DO(k,K){t=A*GLx[k];c+=GLw[k]*(G[k]/(z_type( 1.,t)-z)-E[k]/(z_type(-1.,t)-z));} |
||
| + | cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) ); |
||
| + | cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) ); |
||
| + | c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd; |
||
| + | return c;} |
||
| + | |||
| + | int main(){ int j,k,m,m1,n; DB x,y, p,q, t; z_type z,c,d; |
||
| + | //int M=161,M1=M+1; |
||
| + | int M=601,M1=M+1; |
||
| + | int N=401,N1=N+1; |
||
| + | DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
||
| + | char v[M1*N1]; // v is working array |
||
| + | FILE *o;o=fopen("tetsheldonmap.eps","w");ado(o,602,202); |
||
| + | fprintf(o,"301 101 translate\n 10 10 scale\n"); |
||
| + | DO(m,M1)X[m]=-30.+.1*(m); |
||
| + | DO(n,200)Y[n]=-10.+.05*n; |
||
| + | Y[200]=-.01; |
||
| + | Y[201]= .01; |
||
| + | for(n=202;n<N1;n++) Y[n]=-10.+.05*(n-1.); |
||
| + | for(m=-30;m<31;m++){if(m==0){M(m,-10.2)L(m,10.2)} else{M(m,-10)L(m,10)}} |
||
| + | for(n=-10;n<11;n++){ M( -30,n)L(30,n)} |
||
| + | fprintf(o,".008 W 0 0 0 RGB S\n"); |
||
| + | DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} |
||
| + | DO(n,N1){y=Y[n]; |
||
| + | for(m=295;m<305;m++) |
||
| + | {x=X[m]; //printf("%5.2f\n",x); |
||
| + | z=z_type(x,y); |
||
| + | c=tetb(z); |
||
| + | p=Re(c);q=Im(c); |
||
| + | if(p>-99. && p<99. && q>-99. && q<99. ){ g[m*N1+n]=p;f[m*N1+n]=q;} |
||
| + | d=c; |
||
| + | for(k=1;k<31;k++) |
||
| + | { m1=m+k*10; if(m1>M) break; |
||
| + | d=exp(a*d); |
||
| + | p=Re(d);q=Im(d); |
||
| + | if(p>-99. && p<99. && q>-99. && q<99. ){ g[m1*N1+n]=p;f[m1*N1+n]=q;} |
||
| + | } |
||
| + | d=c; |
||
| + | for(k=1;k<31;k++) |
||
| + | { m1=m-k*10; if(m1<0) break; |
||
| + | d=log(d)/a; |
||
| + | p=Re(d);q=Im(d); |
||
| + | if(p>-99. && p<99. && q>-99. && q<99. ){ g[m1*N1+n]=p;f[m1*N1+n]=q;} |
||
| + | } |
||
| + | }} |
||
| + | fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=1;q=.5; |
||
| + | for(m=-10;m<10;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".02 W 0 .6 0 RGB S\n"); |
||
| + | for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".02 W .9 0 0 RGB S\n"); |
||
| + | for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".02 W 0 0 .9 RGB S\n"); |
||
| + | for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".08 W .9 0 0 RGB S\n"); |
||
| + | for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".08 W 0 0 .9 RGB S\n"); |
||
| + | conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".08 W .6 0 .6 RGB S\n"); |
||
| + | for(m=-9;m<10;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".08 W 0 0 0 RGB S\n"); |
||
| + | // y= 0; for(m=0;m<260;m+=6) {x=-2.-.1*m; M(x,y) L(x-.1,y)} |
||
| + | // fprintf(o,".07 W 1 .5 0 RGB S\n"); |
||
| + | // y= 0; for(m=3;m<260;m+=6) {x=-2-.1*m; M(x,y) L(x-.1,y)} |
||
| + | // fprintf(o,".07 W 0 .5 1 RGB S\n"); |
||
| + | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
| + | system("epstopdf tetsheldonmap.eps"); |
||
| + | system( "open tetsheldonmap.pdf"); |
||
| + | getchar(); system("killall Preview"); |
||
| + | } |
||
| + | </pre> |
||
| + | ==[[Latex]] generator of labels== |
||
| + | <pre> |
||
| + | \documentclass[12pt]{article} |
||
| + | \paperwidth 618pt |
||
| + | \paperheight 214pt |
||
| + | \textwidth 1060pt |
||
| + | \textheight 500pt |
||
| + | \topmargin -108pt |
||
| + | \oddsidemargin -70pt |
||
| + | \pagestyle{empty} |
||
| + | \usepackage[usenames]{color} |
||
| + | \usepackage[utf8x]{inputenc} |
||
| + | \usepackage{hyperref} |
||
| + | \usepackage{graphicx} |
||
| + | \usepackage{rotating} |
||
| + | \newcommand \sx {\scalebox} |
||
| + | \newcommand \ing {\includegraphics} |
||
| + | \newcommand \rme {\mathrm{e}} |
||
| + | \newcommand \rot {\begin{rotate}} |
||
| + | \newcommand \ero {\end{rotate}} |
||
| + | \begin{document} |
||
| + | \parindent 0pt |
||
| + | \begin{picture}(202,211) |
||
| + | \put(10,10){\ing{tetsheldonmap}} |
||
| + | \put(2,206){$y$} |
||
| + | \put(2,188){$8$} |
||
| + | \put(2,168){$6$} |
||
| + | \put(2,148){$4$} |
||
| + | \put(2,128){$2$} |
||
| + | \put(2,108){$0$} |
||
| + | \put(-6,88){$-2$} |
||
| + | \put(-6,68){$-4$} |
||
| + | \put(-6,48){$-6$} |
||
| + | \put(-6,28){$-8$} |
||
| + | %\put(0,8){-10}\put(261,0){$-4$} |
||
| + | \put(-1,0){$-30$} |
||
| + | \put( 49,0){$-25$} |
||
| + | \put( 99,0){$-20$} |
||
| + | \put(149,0){$-15$} |
||
| + | \put(199,0){$-10$} |
||
| + | %\put(222,0){$-8$} |
||
| + | %\put(242,0){$-6$} |
||
| + | \put(252,0){$-5$} |
||
| + | %\put(262,0){$-4$} |
||
| + | %\put(282,0){$-2$} |
||
| + | \put(309,0){$0$} |
||
| + | \put(329,0){$2$} |
||
| + | \put(349,0){$4$} |
||
| + | \put(369,0){$6$} |
||
| + | \put(389,0){$8$} |
||
| + | \put(407,0){$10$} |
||
| + | \put(457,0){$15$} |
||
| + | \put(507,0){$20$} |
||
| + | \put(557,0){$25$} |
||
| + | \put(607,1){$x$} |
||
| + | \multiput(24,180)(118,-1){5}{$v\!=\!1.2$} |
||
| + | \multiput(70,180)(118,-1){5}{$u\!=\!2$} |
||
| + | \multiput(112,158)(118,-1){5}{\rot{-50}$v\!=\!1$\ero} |
||
| + | \multiput(102,142)(118,-1){5}{\rot{-35}$v\!=\!0.8$\ero} |
||
| + | \put(336,107){\rot{-11}$v\!=\!0$\ero} |
||
| + | \multiput(206, 92)(119,-22){4}{$v\!=\!-1$} |
||
| + | \multiput(70, 84)(119,-22){4}{$u\!=\!1.2$} |
||
| + | \multiput(110, 76)(119,-22){4}{$v\!=\!-1.4$} |
||
| + | \put(470,200){$u+\mathrm i v \approx 2.0565+1.1445 \,\mathrm i$} |
||
| + | \put(30,20){$u+\mathrm i v \approx 2.2284-1.3508 \,\mathrm i$} |
||
| + | \end{picture} |
||
| + | \end{document} |
||
| + | </pre> |
||
| + | |||
| + | ==References== |
||
| + | {{ref}} |
||
| + | |||
| + | {{fer}} |
||
| + | |||
| + | ==Keywords== |
||
| + | «[[Abelfunction]]», |
||
| + | «[[Superfunction]]», |
||
| + | «[[Superfunctions]]», |
||
| + | «[[Tetration to Sheldon base]]», |
||
| + | «[[Tetration]]», |
||
| + | |||
| + | «[[ado.cin]]», |
||
| + | «[[conto.cin]]», |
||
| + | «[[filog.cin]]», |
||
| + | «[[GLxw2048.inc]]», |
||
| + | «[[TetSheldonIma.inc]]», |
||
| + | |||
| + | «[[Суперфункции]]», |
||
| + | |||
| + | [[Category:Book]] |
||
| + | [[Category:BookMap]] |
||
| + | [[Category:C++]] |
||
[[Category:Complex map]] |
[[Category:Complex map]] |
||
| + | [[Category:Lambert Academic Publishing]] |
||
| + | [[Category:Latex]] |
||
| + | [[Category:Tetration]] |
||
| + | [[Category:Tetration to Sheldon base]] |
||
| + | [[Category:Sheldon Levenstein]] |
||
| + | [[Category:Superfunction]] |
||
| + | [[Category:Superfunctions]] |
||
Latest revision as of 17:54, 9 December 2025
Top picture of Figure 18.3 at page 250 of book «Superfunctions» [1]:
Complex map of tetration to Sheldon base \(b=s=1.52598338517+0.0178411853321 i \).
Function \(f=\mathrm{tet}_s(x+\mathrm i y)\) is shown in the \(x,y\) plane with levels \(u=\Re(f)=\mathrm{const}\) and levels \(v=\Im(f)=\mathrm{const}\); thick lines correspond ot the integer values.
This map appears also at page 257 as "Рис.18.3" of the Russian version «Суперфункции» of the same book [2]
C++ generator of map
/* Files ado.cin, conto.cin, filog.cin, GLxw2048.inc, TetSheldonIma.inc should be loaded in order to compile the code below */
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
//using namespace std;
#include <complex>
typedef std::complex<double> z_type;
// typedef complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
#include "filog.cin"
z_type b=z_type( 1.5259833851700000, 0.0178411853321000);
z_type a=log(b);
z_type Zo=Filog(a);
z_type Zc=conj(Filog(conj(a)));
DB A=32.;
z_type tetb(z_type z){ int k; DB t; z_type c, cu,cd;
#include "GLxw2048.inc"
int K=2048;
//#include "ima6.inc"
#include "TetSheldonIma.inc"
z_type E[2048],G[2048];
DO(k,K){c=F[k]; E[k]=log(c)/a; G[k]=exp(a*c);}
c=0.;
z+=z_type(0.1196573712872846, 0.1299776198056910);
DO(k,K){t=A*GLx[k];c+=GLw[k]*(G[k]/(z_type( 1.,t)-z)-E[k]/(z_type(-1.,t)-z));}
cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) );
cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) );
c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd;
return c;}
int main(){ int j,k,m,m1,n; DB x,y, p,q, t; z_type z,c,d;
//int M=161,M1=M+1;
int M=601,M1=M+1;
int N=401,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
FILE *o;o=fopen("tetsheldonmap.eps","w");ado(o,602,202);
fprintf(o,"301 101 translate\n 10 10 scale\n");
DO(m,M1)X[m]=-30.+.1*(m);
DO(n,200)Y[n]=-10.+.05*n;
Y[200]=-.01;
Y[201]= .01;
for(n=202;n<N1;n++) Y[n]=-10.+.05*(n-1.);
for(m=-30;m<31;m++){if(m==0){M(m,-10.2)L(m,10.2)} else{M(m,-10)L(m,10)}}
for(n=-10;n<11;n++){ M( -30,n)L(30,n)}
fprintf(o,".008 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;}
DO(n,N1){y=Y[n];
for(m=295;m<305;m++)
{x=X[m]; //printf("%5.2f\n",x);
z=z_type(x,y);
c=tetb(z);
p=Re(c);q=Im(c);
if(p>-99. && p<99. && q>-99. && q<99. ){ g[m*N1+n]=p;f[m*N1+n]=q;}
d=c;
for(k=1;k<31;k++)
{ m1=m+k*10; if(m1>M) break;
d=exp(a*d);
p=Re(d);q=Im(d);
if(p>-99. && p<99. && q>-99. && q<99. ){ g[m1*N1+n]=p;f[m1*N1+n]=q;}
}
d=c;
for(k=1;k<31;k++)
{ m1=m-k*10; if(m1<0) break;
d=log(d)/a;
p=Re(d);q=Im(d);
if(p>-99. && p<99. && q>-99. && q<99. ){ g[m1*N1+n]=p;f[m1*N1+n]=q;}
}
}}
fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=1;q=.5;
for(m=-10;m<10;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".02 W 0 .6 0 RGB S\n");
for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".02 W .9 0 0 RGB S\n");
for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".02 W 0 0 .9 RGB S\n");
for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".08 W .9 0 0 RGB S\n");
for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".08 W 0 0 .9 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".08 W .6 0 .6 RGB S\n");
for(m=-9;m<10;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".08 W 0 0 0 RGB S\n");
// y= 0; for(m=0;m<260;m+=6) {x=-2.-.1*m; M(x,y) L(x-.1,y)}
// fprintf(o,".07 W 1 .5 0 RGB S\n");
// y= 0; for(m=3;m<260;m+=6) {x=-2-.1*m; M(x,y) L(x-.1,y)}
// fprintf(o,".07 W 0 .5 1 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf tetsheldonmap.eps");
system( "open tetsheldonmap.pdf");
getchar(); system("killall Preview");
}
Latex generator of labels
\documentclass[12pt]{article}
\paperwidth 618pt
\paperheight 214pt
\textwidth 1060pt
\textheight 500pt
\topmargin -108pt
\oddsidemargin -70pt
\pagestyle{empty}
\usepackage[usenames]{color}
\usepackage[utf8x]{inputenc}
\usepackage{hyperref}
\usepackage{graphicx}
\usepackage{rotating}
\newcommand \sx {\scalebox}
\newcommand \ing {\includegraphics}
\newcommand \rme {\mathrm{e}}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\begin{document}
\parindent 0pt
\begin{picture}(202,211)
\put(10,10){\ing{tetsheldonmap}}
\put(2,206){$y$}
\put(2,188){$8$}
\put(2,168){$6$}
\put(2,148){$4$}
\put(2,128){$2$}
\put(2,108){$0$}
\put(-6,88){$-2$}
\put(-6,68){$-4$}
\put(-6,48){$-6$}
\put(-6,28){$-8$}
%\put(0,8){-10}\put(261,0){$-4$}
\put(-1,0){$-30$}
\put( 49,0){$-25$}
\put( 99,0){$-20$}
\put(149,0){$-15$}
\put(199,0){$-10$}
%\put(222,0){$-8$}
%\put(242,0){$-6$}
\put(252,0){$-5$}
%\put(262,0){$-4$}
%\put(282,0){$-2$}
\put(309,0){$0$}
\put(329,0){$2$}
\put(349,0){$4$}
\put(369,0){$6$}
\put(389,0){$8$}
\put(407,0){$10$}
\put(457,0){$15$}
\put(507,0){$20$}
\put(557,0){$25$}
\put(607,1){$x$}
\multiput(24,180)(118,-1){5}{$v\!=\!1.2$}
\multiput(70,180)(118,-1){5}{$u\!=\!2$}
\multiput(112,158)(118,-1){5}{\rot{-50}$v\!=\!1$\ero}
\multiput(102,142)(118,-1){5}{\rot{-35}$v\!=\!0.8$\ero}
\put(336,107){\rot{-11}$v\!=\!0$\ero}
\multiput(206, 92)(119,-22){4}{$v\!=\!-1$}
\multiput(70, 84)(119,-22){4}{$u\!=\!1.2$}
\multiput(110, 76)(119,-22){4}{$v\!=\!-1.4$}
\put(470,200){$u+\mathrm i v \approx 2.0565+1.1445 \,\mathrm i$}
\put(30,20){$u+\mathrm i v \approx 2.2284-1.3508 \,\mathrm i$}
\end{picture}
\end{document}
References
- ↑
https://www.amazon.co.jp/-/en/Dmitrii-Kouznetsov/dp/6202672862
https://www.morebooks.de/shop-ui/shop/product/978-620-2-67286-3
https://mizugadro.mydns.jp/BOOK/468.pdf
D.Kouznetov. Superfunctions. Lambert Academic Publishing, 2020. - ↑
https://mizugadro.mydns.jp/BOOK/202.pdf
Дмитрий Кузнецов. Суперфункции. Lambert Academic Publishing, 2014
Keywords
«Abelfunction», «Superfunction», «Superfunctions», «Tetration to Sheldon base», «Tetration»,
«ado.cin», «conto.cin», «filog.cin», «GLxw2048.inc», «TetSheldonIma.inc»,
«Суперфункции»,
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 17:50, 20 June 2013 | 2,549 × 702 (982 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following 2 pages use this file: