Difference between revisions of "File:ZexIteT.jpg"

From TORI
Jump to navigation Jump to search
m (it is not a complex map!)
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
  +
{{oq|File:ZexIteT.jpg|Original file ‎(2,508 × 2,508 pixels, file size: 973 KB, MIME type: image/jpeg)}}
  +
 
[[Explicit plot]] of iterations of function [[Zex]]
 
[[Explicit plot]] of iterations of function [[Zex]]
   
$ y=\mathrm{zex}^n(x)$
+
\( y=\mathrm{zex}^n(x)\)
   
for various number $n$ of iterates. Here, $\mathrm{zex}(z)\!=\!z\exp(z)$. The non-integer iterates are implemented through the [[superfunciton]] of [[zex]] and its [[abelfunction]], named [[SuZex]] and [[AuZex]], as follows:
+
for various number $n$ of iterates. Here, \(\ \mathrm{zex}(z)\!=\!z\exp(z)\ \). The non-integer iterates are implemented through the [[superfunction]] of [[zex]] and its [[abelfunction]], named [[SuZex]] and [[AuZex]], as follows:
   
$ \mathrm{zex}^n(x)=\mathrm{SuZex}\Big(n+\mathrm{AuZex}(x)\Big)$
+
\( \mathrm{zex}^n(x)=\mathrm{SuZex}\Big(n+\mathrm{AuZex}(x)\Big) \)
  +
  +
This plot appears as Fig.11.8 at page 147 of book «[[Superfunctions]]», 2020
  +
<ref name="a">
  +
https://www.amazon.com/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862
  +
Dmitrii Kouznetsov. [[Superfunctions]]. [[Lambert Academic Publishing]], 2020.
  +
Tools for evaluation of superfunctions, abelfunctions and non-integer iterates of holomorphic functions are collected. For a given transferfunction T, the superfunction is solution F of the transfer equation F(z+1)=T(F(z)) . The abelfunction is inverse of F. In particular, superfunctions of factorial, exp, sin are suggested. The Holomorphic extensions of the logistic sequence and those of the Ackermann functions are considered. Among ackermanns, the tetration (mainly to the base b>1) and natural pentation (to base b=e) are presented. The efficient algorithm for the evaluation of superfunctions and abelfunctions are described. The graphics and complex maps are plotted. The possible applications are discussed. Superfunctions significantly extend the set of functions, that can be used in scientific research and technical design.
  +
</ref><ref name="t">
  +
https://mizugadro.mydns.jp/BOOK/468.pdf
  +
Dmitrii Kouznetsov. [[Superfunctions]]. [[Lambert Academic Publishing]], 2020.
  +
</ref><br>
  +
as a verification, a support of the pretentious claim that
  +
with formalism of [[Superfunctions]],
  +
the Author can iterate any growing real-holomorphic function,
  +
and the number \(n\) of the iterate has no need to be integer.
   
 
==[[C++]] generator of curves==
 
==[[C++]] generator of curves==
   
 
// Files [[ado.cin]], [[Tania.cin]], [[LambertW.cin]], [[SuZex.cin]], [[AuZex.cin]] should be loaded to the working directory in order to compile the code below.
 
// Files [[ado.cin]], [[Tania.cin]], [[LambertW.cin]], [[SuZex.cin]], [[AuZex.cin]] should be loaded to the working directory in order to compile the code below.
  +
//<pre>
 
 
 
#include <math.h>
 
#include <math.h>
 
#include <stdio.h>
 
#include <stdio.h>
Line 54: Line 69:
 
getchar(); system("killall Preview"); // For macintosh
 
getchar(); system("killall Preview"); // For macintosh
 
}
 
}
  +
</pre>
 
 
 
 
==[[Latex]] generator of labels==
 
==[[Latex]] generator of labels==
  +
%<pre>
 
 
% file ZexIte.pdf should be generated with the code above in order to compile the Latex document below.
 
%<nowiki> %<br>
 
% file ZexIte.pdf should be generated with the code above in order to compile the Latex document below. %<br>
 
 
% Copyleft 2012 by Dmitrii Kouznetsov <br> %
 
% Copyleft 2012 by Dmitrii Kouznetsov <br> %
 
\documentclass[12pt]{article} % <br>
 
\documentclass[12pt]{article} % <br>
Line 133: Line 144:
 
\end{picture} % <br>
 
\end{picture} % <br>
 
\end{document} % <br>
 
\end{document} % <br>
%</nowiki>
+
</pre>
   
   
  +
==References==
[[Category:Zex]]
 
  +
{{ref}}
[[Category:LambertW]]
 
  +
[[Category:Iteration]]
 
  +
{{fer}}
[[Category:SuperFunction]]
 
  +
==Keywords==
[[Category:AbelFunction]]
 
  +
[[Category:Explicit plot]]
 
  +
«[[Abelfunction]]»,
  +
«[[ArcLambertW]]»,
  +
«[[ArcZex]]»,
  +
«[[AuZex]]»,
  +
«[[Exotic iteration]]»,
  +
«[[Fixed point]]»,
  +
«[[Iterate]]»,
  +
«[[Iteration]]»,
  +
«[[LambertW]]»,
  +
«[[ProductLog]]»,
  +
«[[Superfunction]]»,
  +
«[[Superfunctions]]»,
  +
«[[SuZex]]»,
  +
«[[Transfer function]]»,
  +
«[[Transferfunction]]»,
  +
«[[Zex]]»,
  +
  +
«[[Суперфункции]]»,
  +
 
[[Category:Abelfunction]]
 
[[Category:ArcZex]]
  +
[[Category:AuZex]]
  +
[[Category:Book]]
  +
[[Category:BookE]]
  +
[[Category:BookPlot]]
  +
[[Category:BookPlotE]]
 
[[Category:C++]]
 
[[Category:C++]]
  +
[[Category:Exotic iteration]]
 
[[Category:Explicit plot]]
  +
[[Category:Inverse functions]]
  +
[[Category:Iterate]]
 
[[Category:Iteration]]
 
[[Category:LambertW]]
  +
[[Category:LambertW function]]
 
[[Category:Latex]]
 
[[Category:Latex]]
  +
[[Category:Superfunction]]
  +
[[Category:SuZex]]
  +
[[Category:Superfunction]]
  +
[[Category:Superfunctions]]
  +
[[Category:Transfer function]]
 
[[Category:zex]]

Latest revision as of 18:15, 26 August 2025


Explicit plot of iterations of function Zex

\( y=\mathrm{zex}^n(x)\)

for various number $n$ of iterates. Here, \(\ \mathrm{zex}(z)\!=\!z\exp(z)\ \). The non-integer iterates are implemented through the superfunction of zex and its abelfunction, named SuZex and AuZex, as follows:

\( \mathrm{zex}^n(x)=\mathrm{SuZex}\Big(n+\mathrm{AuZex}(x)\Big) \)

This plot appears as Fig.11.8 at page 147 of book «Superfunctions», 2020 [1][2]
as a verification, a support of the pretentious claim that with formalism of Superfunctions, the Author can iterate any growing real-holomorphic function, and the number \(n\) of the iterate has no need to be integer.

C++ generator of curves

// Files ado.cin, Tania.cin, LambertW.cin, SuZex.cin, AuZex.cin should be loaded to the working directory in order to compile the code below.

//
 
 #include <math.h>
 #include <stdio.h>
 #include <stdlib.h>
 #define DB double
 #define DO(x,y) for(x=0;x<y;x++)
 using namespace std;
 #include<complex>
 typedef complex<double> z_type;
 #define Re(x) x.real()
 #define Im(x) x.imag()
 #define I z_type(0.,1.)

 #include "Tania.cin" // need for LambertW
 #include "LambertW.cin" // need for AuZex
 #include "SuZex.cin"
 #include "AuZex.cin"
 #include "ado.cin"
 #define M(x,y) fprintf(o,"%6.4f %6.4f M\n",0.+x,0.+y);
 #define L(x,y) fprintf(o,"%6.4f %6.4f L\n",0.+x,0.+y);

 main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;  FILE *o;o=fopen("ZexIte.eps","w");  ado(o,1204,1204);
 fprintf(o,"2 2 translate\n 100 100 scale\n");
 fprintf(o,"1 setlinejoin 2 setlinecap\n");
 for(n=0;n<13;n++) {M(0,n)L(12,n)}
 for(m=0;m<13;m++) {M(m,0)L(m,12)}
 M(M_E,0)L(M_E,1) M(0,M_E)L(1,M_E)  fprintf(o,".01 W S\n");
 
 DO(m,700){x=.01 +.02*m; y=Re(LambertW(LambertW(x)));if(m==0) M(x,y) else L(x,y) if(x>12.03||y>12.03) break;} fprintf(o,".033 W 1 0 1 RGB S\n");
 DO(m,700){x=.01 +.02*m; y=Re(LambertW(x));if(m==0) M(x,y) else L(x,y) if(x>12.03||y>12.03) break;} fprintf(o,".04 W 1 0 1 RGB S\n");
 M(0,0) L(12.03,12.03) fprintf(o,".03 W 0 1 0 RGB S\n");
 DO(m,700){x=.01 +.02*m; y=Re(zex(x));     if(m==0) M(x,y) else L(x,y) if(x>12.03||y>12.03) break;} fprintf(o,".04 W 0 1 0 RGB S\n");
 DO(m,700){x=.01 +.02*m; y=Re(zex(zex(x)));     if(m==0) M(x,y) else L(x,y) if(x>12.03||y>12.03) break;} fprintf(o,".033 W 0 1 0 RGB S\n");

 for(n=-10;n<11;n++){
   DO(m,700){x=.01 +.02*m; y=Re(auzex(x)); y=Re(suzex(.1*n+y)); if(m==0) M(x,y) else L(x,y) if(x>12.03||y>12.03) break;}  
   fprintf(o,".023 W 0 0 0 RGB S\n");
                    }
 fprintf(o,"showpage\n"); fprintf(o,"%c%cTrailer\n",'%','%');  fclose(o);
       system("epstopdf ZexIte.eps"); 
       system(    "open ZexIte.pdf"); //for macintosh
       getchar(); system("killall Preview"); // For macintosh
 }

Latex generator of labels

%
% file ZexIte.pdf should be generated with the code above in order to compile the Latex document below. 
% Copyleft 2012 by Dmitrii Kouznetsov <br> %
\documentclass[12pt]{article}  % <br> 
\usepackage{geometry}  % <br> 
\usepackage{graphicx} % <br> 
\usepackage{rotating} % <br> 
\paperwidth 1208pt % <br> 
\paperheight 1208pt % <br> 
\topmargin -103pt % <br> 
\oddsidemargin -73pt % <br> 
\textwidth 1404pt % <br> 
\textheight 1404pt % <br> 
\pagestyle {empty} % <br> 
\newcommand \sx {\scalebox} % <br> 
\newcommand \rot {\begin{rotate}} % <br> 
\newcommand \ero {\end{rotate}} % <br> 
\newcommand \ing {\includegraphics} % <br> 
\parindent 0pt%  <br> 
\pagestyle{empty} % <br> 
\begin{document}  % <br> 
\begin{picture}(1202,1202) % <br> 
%\put(10,10){\ing{IterPowPlot}} % <br> 
%\put(10,10){\ing{IterEq2plot}} % <br> 
\put(0,0){\ing{ZexIte}} % <br> 
\put(11,1184){\sx{4.4}{$y$}} % <br> 
\put(04,1090){\sx{4}{$11$}} % <br> 
\put(04,990){\sx{4}{$10$}} % <br> 
\put(11,890){\sx{4}{$9$}} % <br> 
\put(11,790){\sx{4}{$8$}} % <br> 
\put(11,690){\sx{4}{$7$}} % <br> 
\put(11,590){\sx{4}{$6$}} % <br> 
\put(11,490){\sx{4}{$5$}} % <br> 
\put(11,390){\sx{4}{$4$}} % <br> 
\put(11,290){\sx{4}{$3$}} % <br> 
\put(11,190){\sx{4}{$2$}} % <br> 
\put(11,090){\sx{4}{$1$}} % <br> 
 % <br> 
\put(91,6){\sx{4}{$1$}} % <br> 
\put(191,6){\sx{4}{$2$}} % <br> 
\put(291,6){\sx{4}{$3$}} % <br> 
\put(391,6){\sx{4}{$4$}} % <br> 
\put(492,6){\sx{4}{$5$}} % <br> 
\put(592,6){\sx{4}{$6$}} % <br> 
\put(693,6){\sx{4}{$7$}} % <br> 
\put(794,6){\sx{4}{$8$}} % <br> 
\put(894,6){\sx{4}{$9$}} % <br> 
\put(982,6){\sx{4}{$10$}} % <br> 
\put(1082,6){\sx{4}{$11$}} % <br> 
\put(1180,6){\sx{4.4}{$x$}} % <br> 
 % <br> 
 
\put(116,1058){\sx{5}{\rot{88}$n\!=\!2$\ero}} % <br> 
\put(182,1058){\sx{5}{\rot{88}$n\!=\!1$\ero}} % <br> 
\put(141,706){\sx{4.5}{\rot{86}$y\!=\!\mathrm{zex}(x)$\ero}} % <br> 
%
\put(512,1030){\sx{5}{\rot{72}$n\!=\!0.3$\ero}} % <br> 
\put(629,1032){\sx{5}{\rot{64}$n\!=\!0.2$\ero}} % <br> 
\put(804,1037){\sx{5}{\rot{56}$n\!=\!0.1$\ero}} % <br> 
 % <br> 
\put(1072,1052){\sx{5}{\rot{44}$n\!=\!0$\ero}} % <br> 
\put(772,752){\sx{5}{\rot{44}$y\!=\!x$\ero}} % <br> 
% <br> 
\put(1028,762){\sx{5}{\rot{32}$n\!=\!-0.1$\ero}} % <br> 
\put(1014,590){\sx{5}{\rot{23}$n\!=\!-0.2$\ero}} % <br> 
\put(1006,470){\sx{5}{\rot{17}$n\!=\!-0.3$\ero}} % <br> 
%
\put(510,108){\sx{4.3}{\rot{3}$y\!=\!\mathrm{LambertW}(x)$\ero}} % <br> 
\put(1010,142){\sx{5}{\rot{2}$n\!=\!-1$\ero}} % <br> 
\put(1010,83){\sx{5}{\rot{1}$n\!=\!-2$\ero}} % <br> 
%<br>
\end{picture} % <br> 
\end{document} % <br> 


References

  1. https://www.amazon.com/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. Superfunctions. Lambert Academic Publishing, 2020. Tools for evaluation of superfunctions, abelfunctions and non-integer iterates of holomorphic functions are collected. For a given transferfunction T, the superfunction is solution F of the transfer equation F(z+1)=T(F(z)) . The abelfunction is inverse of F. In particular, superfunctions of factorial, exp, sin are suggested. The Holomorphic extensions of the logistic sequence and those of the Ackermann functions are considered. Among ackermanns, the tetration (mainly to the base b>1) and natural pentation (to base b=e) are presented. The efficient algorithm for the evaluation of superfunctions and abelfunctions are described. The graphics and complex maps are plotted. The possible applications are discussed. Superfunctions significantly extend the set of functions, that can be used in scientific research and technical design.
  2. https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov. Superfunctions. Lambert Academic Publishing, 2020.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current17:50, 20 June 2013Thumbnail for version as of 17:50, 20 June 20132,508 × 2,508 (973 KB)Maintenance script (talk | contribs)Importing image file

The following 2 pages use this file:

Metadata