Difference between revisions of "File:Shelima600.png"
($ -> \( ; pre; ref; Keywords) |
m |
||
| Line 17: | Line 17: | ||
The red curve shows \(y=\Im\Big( \mathrm{tet}_b(\mathrm i x)\Big)\) |
The red curve shows \(y=\Im\Big( \mathrm{tet}_b(\mathrm i x)\Big)\) |
||
| − | In the Russian version |
+ | In the Russian version «[[Суперфункции]]» <ref name="br"> |
https://mizugadro.mydns.jp/BOOK/202.pdf |
https://mizugadro.mydns.jp/BOOK/202.pdf |
||
Д.Кузнетсов. [[Суперфункции]]. [[Lambert Academic Publishing]], 2014. |
Д.Кузнетсов. [[Суперфункции]]. [[Lambert Academic Publishing]], 2014. |
||
Latest revision as of 22:25, 3 January 2026
Bottom part of Fig.18.3 at page 250 of book «Superfunctions» [1], 2020.
Explicit plot of real and imaginary part of tetration to Sheldon base \(b\) of imaginary argument. Here \[ b=1.52598338517 + 0.0178411853321~ \mathrm{i} \] The blue curve shows \(y=\Re\Big( \mathrm{tet}_b(\mathrm i x)\Big)\)
The red curve shows \(y=\Im\Big( \mathrm{tet}_b(\mathrm i x)\Big)\)
In the Russian version «Суперфункции» [2], 2014, this picture is absent.
Table of values
\(~ ~x~ ~\) \(~ ~\Re(\mathrm{tet}_b(\mathrm i x))~ ~\) \(~ ~\Im(\mathrm{tet}_b(\mathrm i x))\)
-10.00 2.2202212609 -1.3393771522
-9.90 2.2196731381 -1.3388553660
-9.80 2.2190910829 -1.3383114251
-9.70 2.2184731185 -1.3377444826
-9.60 2.2178171599 -1.3371536640
-9.50 2.2171210078 -1.3365380660
-9.40 2.2163823431 -1.3358967563
-9.30 2.2155987208 -1.3352287720
-9.20 2.2147675635 -1.3345331194
-9.10 2.2138861545 -1.3338087726
-9.00 2.2129516317 -1.3330546724
-8.90 2.2119609791 -1.3322697257
-8.80 2.2109110202 -1.3314528034
-8.70 2.2097984096 -1.3306027402
-8.60 2.2086196248 -1.3297183321
-8.50 2.2073709574 -1.3287983354
-8.40 2.2060485042 -1.3278414651
-8.30 2.2046481579 -1.3268463926
-8.20 2.2031655968 -1.3258117437
-8.10 2.2015962752 -1.3247360964
-8.00 2.1999354119 -1.3236179782
-7.90 2.1981779800 -1.3224558632
-7.80 2.1963186945 -1.3212481688
-7.70 2.1943520007 -1.3199932521
-7.60 2.1922720612 -1.3186894058
-7.50 2.1900727435 -1.3173348536
-7.40 2.1877476059 -1.3159277450
-7.30 2.1852898835 -1.3144661496
-7.20 2.1826924737 -1.3129480506
-7.10 2.1799479207 -1.3113713370
-7.00 2.1770484004 -1.3097337961
-6.90 2.1739857032 -1.3080331037
-6.80 2.1707512180 -1.3062668134
-6.70 2.1673359142 -1.3044323456
-6.60 2.1637303238 -1.3025269736
-6.50 2.1599245231 -1.3005478090
-6.40 2.1559081133 -1.2984917849
-6.30 2.1516702011 -1.2963556371
-6.20 2.1471993787 -1.2941358833
-6.10 2.1424837030 -1.2918287992
-6.00 2.1375106749 -1.2894303921
-5.90 2.1322672181 -1.2869363712
-5.80 2.1267396576 -1.2843421145
-5.70 2.1209136985 -1.2816426317
-5.60 2.1147744042 -1.2788325222
-5.50 2.1083061753 -1.2759059295
-5.40 2.1014927291 -1.2728564888
-5.30 2.0943170796 -1.2696772695
-5.20 2.0867615183 -1.2663607109
-5.10 2.0788075973 -1.2628985502
-5.00 2.0704361133 -1.2592817434
-4.90 2.0616270956 -1.2555003763
-4.80 2.0523597956 -1.2515435664
-4.70 2.0426126821 -1.2473993541
-4.60 2.0323634408 -1.2430545817
-4.50 2.0215889804 -1.2384947601
-4.40 2.0102654464 -1.2337039220
-4.30 1.9983682448 -1.2286644588
-4.20 1.9858720768 -1.2233569428
-4.10 1.9727509879 -1.2177599308
-4.00 1.9589784331 -1.2118497494
-3.90 1.9445273631 -1.2056002612
-3.80 1.9293703334 -1.1989826096
-3.70 1.9134796423 -1.1919649425
-3.60 1.8968275023 -1.1845121140
-3.50 1.8793862518 -1.1765853645
-3.40 1.8611286122 -1.1681419794
-3.30 1.8420280011 -1.1591349277
-3.20 1.8220589080 -1.1495124836
-3.10 1.8011973445 -1.1392178346
-3.00 1.7794213797 -1.1281886816
-2.90 1.7567117731 -1.1163568397
-2.80 1.7330527191 -1.1036478499
-2.70 1.7084327173 -1.0899806167
-2.60 1.6828455826 -1.0752670901
-2.50 1.6562916111 -1.0594120161
-2.40 1.6287789134 -1.0423127871
-2.30 1.6003249281 -1.0238594279
-2.20 1.5709581198 -1.0039347646
-2.10 1.5407198646 -0.9824148312
-2.00 1.5096665094 -0.9591695767
-1.90 1.4778715856 -0.9340639471
-1.80 1.4454281312 -0.9069594235
-1.70 1.4124510594 -0.8777161012
-1.60 1.3790794751 -0.8461953971
-1.50 1.3454788118 -0.8122634650
-1.40 1.3118426170 -0.7757953788
-1.30 1.2783937743 -0.7366801138
-1.20 1.2453849119 -0.6948263040
-1.10 1.2130977120 -0.6501686844
-1.00 1.1818408268 -0.6026750337
-0.90 1.1519461162 -0.5523533237
-0.80 1.1237629810 -0.4992586603
-0.70 1.0976506656 -0.4434994833
-0.60 1.0739685645 -0.3852424012
-0.50 1.0530647752 -0.3247149921
-0.40 1.0352633815 -0.2622059382
-0.30 1.0208511970 -0.1980619898
-0.20 1.0100649016 -0.1326814891
-0.10 1.0030796228 -0.0665045046
0.00 1.0000000000 0.0000000000
0.10 1.0008546120 0.0663491799
0.20 1.0055943462 0.1320624338
0.30 1.0140948929 0.1966774148
0.40 1.0261631142 0.2597647135
0.50 1.0415466506 0.3209401766
0.60 1.0599458447 0.3798741265
0.70 1.0810269204 0.4362971165
0.80 1.1044353661 0.4900022286
0.90 1.1298086052 0.5408442355
1.00 1.1567872534 0.5887361692
1.10 1.1850245145 0.6336439551
1.20 1.2141935082 0.6755797922
1.30 1.2439925335 0.7145949050
1.40 1.2741484179 0.7507721909
1.50 1.3044182070 0.7842191660
1.60 1.3345894889 0.8150614867
1.70 1.3644796637 0.8434372142
1.80 1.3939344425 0.8694918991
1.90 1.4228258303 0.8933744915
2.00 1.4510498021 0.9152340382
2.10 1.4785238390 0.9352170954
2.20 1.5051844494 0.9534657700
2.30 1.5309847655 0.9701163005
2.40 1.5558922770 0.9852980850
2.50 1.5798867375 0.9991330757
2.60 1.6029582648 1.0117354642
2.70 1.6251056396 1.0232115932
2.80 1.6463348018 1.0336600413
2.90 1.6666575325 1.0431718336
3.00 1.6860903115 1.0518307431
3.10 1.7046533328 1.0597136520
3.20 1.7223696637 1.0668909512
3.30 1.7392645315 1.0734269577
3.40 1.7553647215 1.0793803392
3.50 1.7706980741 1.0848045336
3.60 1.7852930661 1.0897481563
3.70 1.7991784654 1.0942553916
3.80 1.8123830487 1.0983663636
3.90 1.8249353724 1.1021174851
4.00 1.8368635897 1.1055417832
4.10 1.8481953050 1.1086692018
4.20 1.8589574618 1.1115268814
4.30 1.8691762567 1.1141394158
4.40 1.8788770769 1.1165290889
4.50 1.8880844555 1.1187160898
4.60 1.8968220432 1.1207187105
4.70 1.9051125920 1.1225535247
4.80 1.9129779496 1.1242355514
4.90 1.9204390625 1.1257784031
5.00 1.9275159849 1.1271944198
5.10 1.9342278938 1.1284947908
5.20 1.9405931079 1.1296896652
5.30 1.9466291099 1.1307882509
5.40 1.9523525708 1.1317989054
5.50 1.9577793759 1.1327292168
5.60 1.9629246530 1.1335860773
5.70 1.9678027996 1.1343757500
5.80 1.9724275118 1.1351039284
5.90 1.9768118128 1.1357757907
6.00 1.9809680809 1.1363960488
6.10 1.9849080779 1.1369689923
6.20 1.9886429758 1.1374985283
6.30 1.9921833839 1.1379882174
6.40 1.9955393749 1.1384413061
6.50 1.9987205098 1.1388607560
6.60 2.0017358620 1.1392492708
6.70 2.0045940414 1.1396093194
6.80 2.0073032162 1.1399431581
6.90 2.0098711350 1.1402528501
7.00 2.0123051475 1.1405402826
7.10 2.0146122241 1.1408071836
7.20 2.0167989751 1.1410551358
7.30 2.0188716688 1.1412855895
7.40 2.0208362487 1.1414998751
7.50 2.0226983501 1.1416992133
7.60 2.0244633157 1.1418847248
7.70 2.0261362105 1.1420574393
7.80 2.0277218365 1.1422183034
7.90 2.0292247454 1.1423681880
8.00 2.0306492523 1.1425078945
8.10 2.0319994475 1.1426381610
8.20 2.0332792080 1.1427596676
8.30 2.0344922089 1.1428730416
8.40 2.0356419337 1.1429788616
8.50 2.0367316841 1.1430776619
8.60 2.0377645897 1.1431699357
8.70 2.0387436168 1.1432561392
8.80 2.0396715769 1.1433366941
8.90 2.0405511348 1.1434119905
9.00 2.0413848162 1.1434823898
9.10 2.0421750149 1.1435482264
9.20 2.0429239999 1.1436098105
9.30 2.0436339216 1.1436674297
9.40 2.0443068184 1.1437213507
9.50 2.0449446220 1.1437718210
9.60 2.0455491634 1.1438190707
9.70 2.0461221781 1.1438633134
9.80 2.0466653107 1.1439047477
9.90 2.0471801203 1.1439435581
10.00 2.0476680845 1.1439799167
C++ generator of curves
/*Files GLxw2048.inc , TetSheldonIma.inc , ado.cin , conto.cin , filog.cin should be loaded in order to compile the code below */
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
// using namespace std;
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
#include "filog.cin"
z_type b=z_type( 1.5259833851700000, 0.0178411853321000);
z_type a=log(b);
z_type Zo=Filog(a);
z_type Zc=conj(Filog(conj(a)));
DB A=32.;
z_type tetb(z_type z){ int k; DB t; z_type c, cu,cd;
#include "GLxw2048.inc"
int K=2048;
//#include "ima6.inc"
#include "TetSheldonIma.inc"
z_type E[2048],G[2048];
DO(k,K){c=F[k]; E[k]=log(c)/a; G[k]=exp(a*c);}
c=0.;
// z+=z_type(0.1196573712872846, 0.1299776198056910);
z+=z_type( 0.1196591376539 , 0.1299777213955 );
DO(k,K){t=A*GLx[k];c+=GLw[k]*(G[k]/(z_type( 1.,t)-z)-E[k]/(z_type(-1.,t)-z));}
cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) );
cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) );
c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd;
return c;}
int main(){ int j,k,m,m1,n; DB x,y, p,q, t; z_type z,c,d;
// FILE *o;o=fopen("tetsheldonmap.eps","w");ado(o,602,202);
FILE *o;
o=fopen("04.eps","w");ado(o,202,62);
fprintf(o,"101 31 translate\n 10 10 scale\n");
for(m=-10;m<11;m++){if(m==0){M(m,-3.2)L(m,3.2)} else{M(m,-3)L(m,3)}}
for(n=-3;n<4;n++){ M( -10,n)L(10,n)}
fprintf(o,".008 W 0 0 0 RGB S\n");
DO(m,201){x=.1*(m-100); z=z_type(0,x); c=tetb(z);
p=Re(c); q=Im(c);
y=p; if(m==0) M(x,y) else L(x,y)
printf("%6.2lf %14.10lf %14.10lf\n",x,p,q);
}
fprintf(o,".04 W 0 0 1 RGB S\n");
DO(m,201){x=.1*(m-100); z=z_type(0,x); c=tetb(z);
p=Re(c); q=Im(c);
y=q; if(m==0) M(x,y) else L(x,y) }
fprintf(o,".04 W 1 0 0 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf 04.eps");
system( "open 04.pdf");
getchar(); system("killall Preview");
}
Latex generator of labels
\documentclass[12pt]{article}
\usepackage{geometry}
\paperwidth 204pt
\paperheight 64pt
%\textwidth 700pt
\usepackage{graphics}
\newcommand \sx \scalebox
\newcommand \ing \includegraphics
\parindent 0pt
\topmargin -108pt
\oddsidemargin -72pt
\begin{document}
\begin{picture}(602,62)
\put(0,0){\ing{04}}
\put(97,59){\sx{.6}{$y$}}
\put(97,49){\sx{.6}{$2$}}
\put(97,39){\sx{.6}{$1$}}
\put(97,29){\sx{.6}{$0$}}
\put(92,19){\sx{.6}{$-1$}}
\put(92, 9){\sx{.6}{$-2$}}
\put(15,25){\sx{.6}{$-8$}}
\put(35,25){\sx{.6}{$-6$}}
\put(55,25){\sx{.6}{$-4$}}
\put(75,25){\sx{.6}{$-2$}}
\put(100,25){\sx{.6}{$0$}}
\put(120,25){\sx{.6}{$2$}}
\put(140,25){\sx{.6}{$4$}}
\put(160,25){\sx{.6}{$6$}}
\put(180,25){\sx{.6}{$8$}}
\put(199,25){\sx{.6}{$x$}}
\put(10,56){\sx{.7}{$y\!=\! \Re\big(\mathrm{tet}_b(\mathrm i x)\big)$}}
\put(10,11){\sx{.7}{$y\!=\! \Im\big(\mathrm{tet}_b(\mathrm i x)\big)$}}
\end{picture}
\end{document}
References
- ↑ https://mizugadro.mydns.jp/BOOK/468.pdf D.Kouznetsov. Superfunctions. Lambert Academic Publishing, 2020.
- ↑ https://mizugadro.mydns.jp/BOOK/202.pdf Д.Кузнетсов. Суперфункции. Lambert Academic Publishing, 2014.
Keywords
«[[]]», «Explicit plot», «Superfunction», «Superfunctions», «Tetration», «Tetration to Sheldon base», «[[]]»,
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 06:14, 1 December 2018 | 1,693 × 531 (83 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following page uses this file: