Difference between revisions of "File:Factorialz.jpg"

From TORI
Jump to navigation Jump to search
 
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  +
{{oq|Factorialz.jpg|Original file ‎(1,706 × 1,677 pixels, file size: 932 KB, MIME type: image/jpeg)}}
Factorial in the complex plane. Copy from
 
  +
  +
[[Factorial]] in the complex plane.
  +
  +
\[
  +
u+\mathrm iv = \mathrm{Factorial}(x\!+\!\mathrm iy)
  +
\]
  +
  +
The additional level \(u=0.8856031944\)
  +
corresponds to the local minimum of [[Factorial]] of positive argument.
  +
  +
==[[Superfunctions]]==
  +
  +
This map appears as Fig.8.3 at page 92 of book
  +
«[[Superfunctions]]»<ref>
  +
https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas,algorithms,tables,graphics - 2020/7/28
  +
</ref><ref>https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas, algorithms, tables, graphics. Publisher: [[Lambert Academic Publishing]].
  +
</ref>
  +
<br>
  +
as a test of the compex double implementation of [[Factorial]],
  +
but also to show its behavior in the complex plane.<br>
  +
In the Book, the [[Factorial]] is interpreted as a [[Transferfunction]].<br>
  +
For this function, the [[Superfunction]]
  +
\(\mathrm{SuFac}\)
  +
and the
  +
[[Abelfunction]]
  +
\(\mathrm{AuFac}=\mathrm{SuFac}^{-1}\)
  +
and constructed.
  +
Then the \(n\)th iterate of [[Factorial]] ie expressed as follows:
  +
\[
  +
\mathrm{Factorial}^n=\mathrm{SuFac}\big(n+\mathrm{AuFac}(x)\big)
  +
\]
  +
In particular, at \(n!=\!1/2\), this formula expresses the [[Square root of factorial]] <ref>
  +
https://link.springer.com/article/10.3103/S0027134910010029<br>
  +
http://mizugadro.mydns.jp/PAPERS/2010superfae.pdf<br>
  +
http://mizugadro.mydns.jp/PAPERS/2010superfar.pdf<br>
  +
D.Kouznetsov, H.Trappmann. Superfunctions and square root of factorial. Moscow University Physics Bulletin, 2010, v.65, No.1, p.6-12. (Russian version: p.8-14)
  +
</ref>; since century 20, it is used as LOGO of the Physics department of the [[Moscow State Univeristy]].
  +
  +
==Sitizendium==
  +
Similar picture appears at
 
http://en.citizendium.org/wiki/Image:Factorialz.jpg
 
http://en.citizendium.org/wiki/Image:Factorialz.jpg
  +
<!--
  +
The brown line shows the level
  +
<math>u=\mu_1\approx -3.544643611</math> and corresponds to the value of the first local minimum of factorial of the real argument.
  +
!-->
  +
==C++ generator of map==
  +
// files [[fac.cin]], [[ado.cin]], [[conto.cin]] should be loaded
  +
<pre>
  +
#include <math.h>
  +
#include <stdio.h>
  +
#include <stdlib.h>
  +
#define DB double
  +
#define DO(x,y) for(x=0;x<y;x++)
  +
using namespace std;
  +
#include <complex>
  +
typedef complex<double> z_type;
  +
#define Re(x) x.real()
  +
#define Im(x) x.imag()
  +
#define I z_type(0.,1.)
  +
#include "fac.cin"
  +
//#include "sinc.cin"
  +
#include "facp.cin"
  +
#include "afacc.cin"
  +
//#include "superfac.cin"
  +
#include "conto.cin"
   
  +
main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
{{attribution}}
 
  +
int M=403,M1=M+1;
Description:
 
  +
int N=401,N1=N+1;
  +
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
  +
char v[M1*N1]; // v is working array
  +
// FILE *o;o=fopen("fig2b.eps","w");ado(o,402,402);
  +
FILE *o;o=fopen("facmap.eps","w");ado(o,402,402);
  +
fprintf(o,"201 201 translate\n 20 20 scale\n");
  +
DO(m,212) X[m]=-8.+.04*(m);
  +
X[212]=.45;
  +
X[213]=.46;
  +
X[214]=.47;
  +
for(m=215;m<M1;m++) X[m]=-8.+.04*(m-3.);
  +
DO(n,200)Y[n]=-8.+.04*n;
  +
Y[200]=-.008;
  +
Y[201]= .008;
  +
for(n=202;n<N1;n++) Y[n]=-8.+.04*(n-1.);
  +
for(m=-8;m<9;m++){if(m==0){M(m,-8.5)L(m,8.5)} else{M(m,-8)L(m,8)}}
  +
for(n=-8;n<9;n++){ M( -8,n)L(8,n)}
  +
fprintf(o,".008 W 0 0 0 RGB S\n");
  +
DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;}
  +
DO(m,M1){x=X[m]; //printf("%5.2f\n",x);
  +
DO(n,N1){y=Y[n]; z=z_type(x,y);
  +
// c=afacc(z);
  +
c=fac(z);
  +
// c=superfac(z);
  +
// p=abs(c-d)/(abs(c)+abs(d)); p=-log(p)/log(10.)-1.;
  +
p=Re(c);q=Im(c);
  +
if(p>-9999 && p<9999 &&
  +
// (fabs(y)>.034 ||x>-.9 ||fabs(x-int(x))>1.e-3) &&
  +
q>-9999 && q<9999 //&& fabs(q)> 1.e-19
  +
)
  +
{g[m*N1+n]=p;f[m*N1+n]=q;}
  +
}}
  +
//fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=1.8;q=.7;
   
  +
fprintf(o,"1 setlinejoin 1 setlinecap\n"); p=1.4;q=.8;
In the complex <math>z</math>-plane,
 
  +
for(m=-4;m<4;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".025 W 0 .6 0 RGB S\n");
the lines of constant <math>u=\Re(z!)</math> and
 
  +
for(m=0;m<2;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".025 W .9 0 0 RGB S\n");
the lines of constant <math>v=\Im(z!)</math> are shown.
 
  +
for(m=0;m<2;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".025 W 0 0 .9 RGB S\n");
The levels
 
  +
for(m=1;m<15;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".07 W .9 0 0 RGB S\n");
<math>u= -24, -20, -16, -12, -8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,12,16,20,24</math>
 
  +
for(m=1;m<15;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".07 W 0 0 .9 RGB S\n");
are drown with thick black lines.
 
  +
conto(o,f,w,v,X,Y,M,N, (0. ),-9,9); fprintf(o,".07 W .6 0 .6 RGB S\n");
some of intermediate levels <math>u=</math>const are shown with thin blue lines for positive values and with thin red lines for negative values.<br>
 
  +
for(m=-14;m<0;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".07 W 0 0 0 RGB S\n");
The levels
 
  +
m=0; conto(o,g,w,v,X,Y,M,N, (0.+m),-9,9); fprintf(o,".07 W 0 0 0 RGB S\n");
<math>v= -24, -20, -16, -12, -8,-7,-6,-5,-4,-3,-2,-1</math>
 
  +
for(m=1;m<17;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".07 W 0 0 0 RGB S\n");
are shown with thick red lines.<br>
 
  +
//#include"plofu.cin"
The level <math>v=0</math>
 
  +
x=0.8856031944;
is shown with thick pink lines.<br>
 
  +
conto(o,g,w,v,X,Y,M,N,0.8856031944,-p,p); fprintf(o,".02 W .5 .5 0 RGB S\n");
The levels
 
  +
/*
<math>v=1,2,3,4,5,6,7,8,12,16,20,24</math>
 
  +
M(x,-8)L(x,8) fprintf(o,"0 setlinejoin 0 setlinecap 0.004 W 0 0 0 RGB S\n");
are drown with thick blue lines.
 
  +
M(x,0)L(-8.1,0) fprintf(o," .05 W 1 1 1 RGB S\n");
some of intermediate levels <math>v=</math>const are shown with thin green lines.<br>
 
  +
DO(m,23){ M(x-.4*m,0)L(x-.4*(m+.5),0);} fprintf(o,".09 W .3 .3 0 RGB S\n");
The dashed blue line shows the level
 
  +
//M(x,0)L(-8.1,0) fprintf(o,"[.19 .21]0 setdash .05 W 0 0 0 RGB S\n");
<math>u=\mu_0\approx 0.88560319441</math> and corresponds to the value of the principal local minimum of the factorial of the real argument.<br>
 
  +
// May it be, that, some printers do not interpret well the dashing ?
  +
*/
  +
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
  +
system("epstopdf facmap.eps");
  +
system( "open facmap.pdf"); //for LINUX
  +
// getchar(); system("killall Preview");//for mac
  +
}
  +
</pre>
   
  +
==[[Latex]] generator of labels==
The dashed red line shows the level
 
  +
<pre>
<math>u=\mu_1\approx -3.544643611</math> and corresponds to the value of the first local maximum of the factorial of the real argument.
 
  +
\documentclass[12pt]{article}
  +
\usepackage{geometry}
  +
\usepackage{graphicx}
  +
\usepackage{rotating}
  +
\newcommand{\sx}{\scalebox}
  +
\newcommand \rot {\begin{rotate}}
  +
\newcommand \ero {\end{rotate}}
  +
\newcommand \ing \includegraphics
  +
\pagestyle{empty}
  +
\topmargin -86pt
  +
\oddsidemargin -96pt
  +
\textwidth 1400pt
  +
\textheight 1400pt
  +
\paperwidth 1028pt
  +
\paperheight 1010pt
  +
\newcommand \ax {
  +
\put( 10,342){\sx{1.4}{$y$}}
  +
\put( 10,307){\sx{1.3}{$6$}}
  +
\put( 10,267){\sx{1.3}{$4$}}
  +
\put( 10,227){\sx{1.3}{$2$}}
  +
\put( 10,187){\sx{1.3}{$0$}}
  +
\put( 0,147){\sx{1.3}{$-2$}}
  +
\put( 0,107){\sx{1.3}{$-4$}}
  +
\put( 0, 67){\sx{1.3}{$-6$}}
  +
\put( 0, 27){\sx{1.3}{$-8$}}
  +
\put( 50, 18){\sx{1.3}{$-6$}}
  +
\put( 90, 18){\sx{1.3}{$-4$}}
  +
\put(130, 18){\sx{1.3}{$-2$}}
  +
\put(178, 18){\sx{1.3}{$0$}}
  +
\put(218, 18){\sx{1.3}{$2$}}
  +
\put(258, 18){\sx{1.3}{$4$}}
  +
\put(298, 18){\sx{1.3}{$6$}}
  +
\put(334, 19){\sx{1.4}{$x$}}
  +
}
   
  +
\begin{document}
  +
%\sx{1.2}{\begin{picture}(346,346) \ax
  +
\sx{3}{\begin{picture}(346,346) \ax
  +
\put(-20,-10){\includegraphics{facmap}}
  +
\put(286,225){\rot{-7}\sx{1.6}{$v\!=\!0$}\ero}
  +
\put(288,207){\rot{-5}\sx{1.6}{$u\!=\!0$}\ero}
  +
\put(299,187){\sx{1.6}{$v\!=\!0$}}
  +
\put(288,168){\rot{5}\sx{1.6}{$u\!=\!0$}\ero}
  +
\put(286,150){\rot{7}\sx{1.6}{$v\!=\!0$}\ero}
  +
\put(103,100){\rot{54}\sx{1.6}{$u\!=\!0$}\ero}
  +
\put(117,100){\rot{53}\sx{1.6}{$v\!=\!0$}\ero}
  +
\put(135,100){\rot{54}\sx{1.6}{$u\!=\!0$}\ero}
  +
\put(152,100){\rot{54}\sx{1.6}{$v\!=\!0$}\ero}
  +
\put(167, 99){\rot{50}\sx{1.6}{$u\!=\!0$}\ero}
  +
\put(182, 95){\rot{41}\sx{1.6}{$v\!=\!0$}\ero}
  +
\put(194, 85){\rot{39}\sx{1.6}{$u\!=\!0$}\ero}
  +
\put(201, 73){\rot{35}\sx{1.6}{$v\!=\!0$}\ero}
  +
\put(208, 61){\rot{33}\sx{1.6}{$u\!=\!0$}\ero}
  +
\put(215, 49){\rot{28}\sx{1.6}{$v\!=\!0$}\ero}
  +
\end{picture}}
  +
\end{document}
  +
</pre>
   
  +
==References==
  +
{{ref}}
  +
  +
{{fer}}
  +
==Keywords==
  +
  +
«[[]]»,
  +
«[[Factorial]]»,
  +
«[[Square root of Factorial]]»,
  +
«[[Square root of factorial]]»,
  +
«[[Superfuncitons]]»,
  +
«[[Transferfunction]]»,
  +
  +
[[Category:C++]]
  +
[[Category:Complex map]]
  +
[[Category:Book]]
  +
[[Category:BookMap]]
  +
[[Category:Factorial]]
  +
[[Category:Latex]]
  +
[[Category:Map]]
 
[[Category:Plots of functions]]
 
[[Category:Plots of functions]]
 
[[Category:Files from CZ]]
 
[[Category:Files from CZ]]
[[Category:Complex map]]
 

Latest revision as of 13:16, 22 August 2025


Factorial in the complex plane.

\[ u+\mathrm iv = \mathrm{Factorial}(x\!+\!\mathrm iy) \]

The additional level \(u=0.8856031944\) corresponds to the local minimum of Factorial of positive argument.

Superfunctions

This map appears as Fig.8.3 at page 92 of book «Superfunctions»[1][2]
as a test of the compex double implementation of Factorial, but also to show its behavior in the complex plane.
In the Book, the Factorial is interpreted as a Transferfunction.
For this function, the Superfunction \(\mathrm{SuFac}\) and the Abelfunction \(\mathrm{AuFac}=\mathrm{SuFac}^{-1}\) and constructed. Then the \(n\)th iterate of Factorial ie expressed as follows: \[ \mathrm{Factorial}^n=\mathrm{SuFac}\big(n+\mathrm{AuFac}(x)\big) \] In particular, at \(n!=\!1/2\), this formula expresses the Square root of factorial [3]; since century 20, it is used as LOGO of the Physics department of the Moscow State Univeristy.

Sitizendium

Similar picture appears at http://en.citizendium.org/wiki/Image:Factorialz.jpg

C++ generator of map

// files fac.cin, ado.cin, conto.cin should be loaded

 #include <math.h>
 #include <stdio.h>
 #include <stdlib.h>
 #define DB double
 #define DO(x,y) for(x=0;x<y;x++)
 using namespace std;
 #include <complex>
 typedef complex<double> z_type;
 #define Re(x) x.real()
 #define Im(x) x.imag()
 #define I z_type(0.,1.)
 #include "fac.cin"
 //#include "sinc.cin"
 #include "facp.cin"
 #include "afacc.cin"
 //#include "superfac.cin"
 #include "conto.cin"

 main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
   int M=403,M1=M+1;
   int N=401,N1=N+1;
 DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
 char v[M1*N1]; // v is working array
 // FILE *o;o=fopen("fig2b.eps","w");ado(o,402,402);
 FILE *o;o=fopen("facmap.eps","w");ado(o,402,402);
 fprintf(o,"201 201 translate\n 20 20 scale\n");
 DO(m,212) X[m]=-8.+.04*(m);
    X[212]=.45;
    X[213]=.46;
    X[214]=.47;
 for(m=215;m<M1;m++) X[m]=-8.+.04*(m-3.); 
 DO(n,200)Y[n]=-8.+.04*n;
         Y[200]=-.008;
         Y[201]= .008;
 for(n=202;n<N1;n++) Y[n]=-8.+.04*(n-1.); 
 for(m=-8;m<9;m++){if(m==0){M(m,-8.5)L(m,8.5)} else{M(m,-8)L(m,8)}}
 for(n=-8;n<9;n++){	M(  -8,n)L(8,n)}
 fprintf(o,".008 W 0 0 0 RGB S\n");
 DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;}
 DO(m,M1){x=X[m]; //printf("%5.2f\n",x);
 DO(n,N1){y=Y[n]; z=z_type(x,y);	 
 //	c=afacc(z);
 	c=fac(z);
 //	c=superfac(z);
 //	p=abs(c-d)/(abs(c)+abs(d));  p=-log(p)/log(10.)-1.;
 	p=Re(c);q=Im(c);	
 	if(p>-9999 && p<9999 &&
 //	  (fabs(y)>.034 ||x>-.9 ||fabs(x-int(x))>1.e-3) &&
 	   q>-9999 && q<9999 //&& fabs(q)> 1.e-19
 	) 
 	{g[m*N1+n]=p;f[m*N1+n]=q;}
 			}}
 //fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=1.8;q=.7;

 fprintf(o,"1 setlinejoin 1 setlinecap\n"); p=1.4;q=.8;
 for(m=-4;m<4;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".025 W 0 .6 0 RGB S\n");
 for(m=0;m<2;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".025 W .9 0 0 RGB S\n");
 for(m=0;m<2;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".025 W 0 0 .9 RGB S\n");
 for(m=1;m<15;m++)  conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".07 W .9 0 0 RGB S\n");
 for(m=1;m<15;m++)  conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".07 W 0 0 .9 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, (0.  ),-9,9); fprintf(o,".07 W .6 0 .6 RGB S\n");
 for(m=-14;m<0;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".07 W 0 0 0 RGB S\n");
           m=0;     conto(o,g,w,v,X,Y,M,N, (0.+m),-9,9); fprintf(o,".07 W 0 0 0 RGB S\n");
 for(m=1;m<17;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".07 W 0 0 0 RGB S\n");
//#include"plofu.cin"
 x=0.8856031944;
 conto(o,g,w,v,X,Y,M,N,0.8856031944,-p,p); fprintf(o,".02 W .5 .5 0 RGB S\n");
/*
 M(x,-8)L(x,8) fprintf(o,"0 setlinejoin 0 setlinecap 0.004 W 0 0 0 RGB S\n");
 M(x,0)L(-8.1,0) fprintf(o,"                   .05 W  1 1 1 RGB S\n");
 DO(m,23){ M(x-.4*m,0)L(x-.4*(m+.5),0);} fprintf(o,".09 W  .3 .3 0 RGB S\n");
 //M(x,0)L(-8.1,0) fprintf(o,"[.19 .21]0 setdash .05 W  0 0 0 RGB S\n");
 // May it be, that, some printers do not interpret well the dashing ?
*/
 fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
 	system("epstopdf facmap.eps");	
 	system(    "open facmap.pdf");	//for LINUX
 //	getchar(); system("killall Preview");//for mac
 }

Latex generator of labels

\documentclass[12pt]{article}
\usepackage{geometry}
\usepackage{graphicx}
\usepackage{rotating}
\newcommand{\sx}{\scalebox}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\newcommand \ing \includegraphics
\pagestyle{empty}
\topmargin -86pt
\oddsidemargin -96pt
\textwidth 1400pt
\textheight 1400pt
\paperwidth 1028pt
\paperheight 1010pt
\newcommand \ax {
\put( 10,342){\sx{1.4}{$y$}}
\put( 10,307){\sx{1.3}{$6$}}
\put( 10,267){\sx{1.3}{$4$}}
\put( 10,227){\sx{1.3}{$2$}}
\put( 10,187){\sx{1.3}{$0$}}
\put(  0,147){\sx{1.3}{$-2$}}
\put(  0,107){\sx{1.3}{$-4$}}
\put(  0, 67){\sx{1.3}{$-6$}}
\put(  0, 27){\sx{1.3}{$-8$}}
\put( 50, 18){\sx{1.3}{$-6$}}
\put( 90, 18){\sx{1.3}{$-4$}}
\put(130, 18){\sx{1.3}{$-2$}}
\put(178, 18){\sx{1.3}{$0$}}
\put(218, 18){\sx{1.3}{$2$}}
\put(258, 18){\sx{1.3}{$4$}}
\put(298, 18){\sx{1.3}{$6$}}
\put(334, 19){\sx{1.4}{$x$}}
}

\begin{document}
%\sx{1.2}{\begin{picture}(346,346) \ax
\sx{3}{\begin{picture}(346,346) \ax
\put(-20,-10){\includegraphics{facmap}}
\put(286,225){\rot{-7}\sx{1.6}{$v\!=\!0$}\ero}
\put(288,207){\rot{-5}\sx{1.6}{$u\!=\!0$}\ero}
\put(299,187){\sx{1.6}{$v\!=\!0$}}
\put(288,168){\rot{5}\sx{1.6}{$u\!=\!0$}\ero}
\put(286,150){\rot{7}\sx{1.6}{$v\!=\!0$}\ero}
\put(103,100){\rot{54}\sx{1.6}{$u\!=\!0$}\ero}
\put(117,100){\rot{53}\sx{1.6}{$v\!=\!0$}\ero}
\put(135,100){\rot{54}\sx{1.6}{$u\!=\!0$}\ero}
\put(152,100){\rot{54}\sx{1.6}{$v\!=\!0$}\ero}
\put(167, 99){\rot{50}\sx{1.6}{$u\!=\!0$}\ero}
\put(182, 95){\rot{41}\sx{1.6}{$v\!=\!0$}\ero}
\put(194, 85){\rot{39}\sx{1.6}{$u\!=\!0$}\ero}
\put(201, 73){\rot{35}\sx{1.6}{$v\!=\!0$}\ero}
\put(208, 61){\rot{33}\sx{1.6}{$u\!=\!0$}\ero}
\put(215, 49){\rot{28}\sx{1.6}{$v\!=\!0$}\ero}
\end{picture}}
\end{document}

References

  1. https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas,algorithms,tables,graphics - 2020/7/28
  2. https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas, algorithms, tables, graphics. Publisher: Lambert Academic Publishing.
  3. https://link.springer.com/article/10.3103/S0027134910010029
    http://mizugadro.mydns.jp/PAPERS/2010superfae.pdf
    http://mizugadro.mydns.jp/PAPERS/2010superfar.pdf
    D.Kouznetsov, H.Trappmann. Superfunctions and square root of factorial. Moscow University Physics Bulletin, 2010, v.65, No.1, p.6-12. (Russian version: p.8-14)

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current13:10, 22 August 2025Thumbnail for version as of 13:10, 22 August 20251,706 × 1,677 (932 KB)T (talk | contribs)closer to that in book Superfunctions
17:50, 20 June 2013Thumbnail for version as of 17:50, 20 June 20131,219 × 927 (479 KB)Maintenance script (talk | contribs)Importing image file

The following page uses this file:

Metadata