Difference between revisions of "File:E1efig09abc1a150.png"
(T uploaded a new version of File:E1efig09abc1a150.png) |
(add missed genetators) |
||
| Line 1: | Line 1: | ||
| + | ==Summary== |
||
| − | [[Complex map]]s of [[tetration]] $\mathrm{tet}_b$ to base<br> |
||
| + | {{oq|E1efig09abc1a150.png|Original file (1,514 × 518 pixels, file size: 364 KB, MIME type: image/png)}} |
||
| − | $b\!=\!1.5$ , left, <br> |
||
| − | $b\!=\!\exp(1/\mathrm e)$ , center, and<br> |
||
| − | $b\!=\!\sqrt{2}$ , right. |
||
| + | Figure 17.4 from page 245 of book «[[Superfunctions]]»<ref> |
||
| − | $f\!=\! \mathrm{tet}(x\!+\!\mathrm i y)$ is shown in the $x,y$ plane with levels |
||
| + | https://www.amazon.co.jp/-/en/Dmitrii-Kouznetsov/dp/6202672862 <br> |
||
| − | $~p\!=\!\Re(f)\!=\! \mathrm{const}~$ and levels |
||
| + | https://www.morebooks.de/shop-ui/shop/product/978-620-2-67286-3 <br> |
||
| − | $~q\!=\!\Im(f)\!=\! \mathrm{const}~$. The integer levels are shown with thick lines. |
||
| + | https://mizugadro.mydns.jp/BOOK/458.pdf |
||
| + | Dmitrii Kouznetsov. [[Superfunctions]]. [[Lambert Academic Piblishing]], 2020. |
||
| + | </ref>, 2020. |
||
| + | It appears also as page 251 of the Russian version «[[Суперфункции]]»<ref> |
||
| − | This image is close to the figure 9 in the article |
||
| + | https://mizugadro.mydns.jp/BOOK/202.pdf |
||
| − | <ref name="e1e"> |
||
| + | Дмитрий Кузнецов. [[Суперфункции]]. [[Lambert Academic Piblishing]], 2014. |
||
| − | http://tori.ils.uec.ac.jp/PAPERS/2011e1e.pdf |
||
| + | </ref> |
||
| − | H.Trappmann, D.Kouznetsov. Computation of the Two Regular Super-Exponentials to base exp(1/e). (Mathematics of Computation, 2011, in press) |
||
| − | </ref>. |
||
| + | [[Complex map]]s of [[tetration]] \(\mathrm{tet}_b\) to base<br> |
||
| − | The [[C++]] generators of the pictures used in the figure are available and will be uploaded upon request. |
||
| + | \(b\!=\!1.5\) , left, <br> |
||
| + | \(b\!=\!\exp(1/\mathrm e)\) , center, and<br> |
||
| + | \(b\!=\!\sqrt{2}\) , right. |
||
| + | \(f\!=\! \mathrm{tet}(x\!+\!\mathrm i y)\) is shown in the \(x,y\) plane with levels |
||
| − | Copyleft 2011 by Dmitrii Kouznetsov. You may copy, modify and/or distribute the image for free but the source should be attributed. |
||
| + | \(~u\!=\!\Re(f)\!=\! \mathrm{const}~\) and levels |
||
| + | \(~v\!=\!\Im(f)\!=\! \mathrm{const}~\). The integer levels are shown with thick lines. |
||
| + | This image is close to the figure 9 in the article |
||
| − | ==[[C++]] generator of first map, $b\!=\!1.5$ == |
||
| + | <ref name="e1e"> |
||
| + | https://www.ams.org/journals/mcom/2012-81-280/S0025-5718-2012-02590-7/S0025-5718-2012-02590-7.pdf<br> |
||
| + | https://www.researchgate.net/publication/51892955_Computation_of_the_Two_Regular_Super-Exponentials_to_base_exp1e<br> |
||
| + | http://mizugadro.mydns.jp/PAPERS/2012e1eMcom2590.pdf |
||
| + | H.Trappmann, D.Kouznetsov. Computation of the Two Regular Super-Exponentials to base exp(1/e). [[Mathematics of Computation]], 2012, 81, February 8. p.2207-2227. |
||
| + | </ref>; the only notations at labels are improved. |
||
| + | Copyleft 2011,2020,2025 by Dmitrii Kouznetsov. You may copy, modify and/or distribute the image for free but the source should be attributed. Attribute your modifications if any. |
||
| + | |||
| + | ==[[C++]] generator of first map, b=1.5 == |
||
| + | /* |
||
In order to compile the code below, |
In order to compile the code below, |
||
the following files should be loaded: |
the following files should be loaded: |
||
| Line 26: | Line 41: | ||
[[GLxw2048.inc]], |
[[GLxw2048.inc]], |
||
[[f2048b15.inc]], |
[[f2048b15.inc]], |
||
| − | [[f15.cin]] |
+ | [[f15.cin]], |
| + | [[plofu.cin]] */ |
||
| + | <pre> |
||
| − | <poem><nomathjax><nowiki> |
||
#include <math.h> |
#include <math.h> |
||
#include <stdio.h> |
#include <stdio.h> |
||
| Line 125: | Line 141: | ||
} |
} |
||
| + | </pre> |
||
| − | </nowiki></nomathjax></poem> |
||
| − | ==[[C++]] generator of second map== |
+ | ==e1e09b.cc: [[C++]] generator of second map== |
| + | /* [[ado.cin]], |
||
| − | <poem><nomathjax><nowiki> |
||
| + | [[conto.cin]], |
||
| − | </nowiki></nomathjax></poem> |
||
| + | [[e1etf.cin]] should be loaded */ |
||
| + | <pre> |
||
| + | #include <math.h> |
||
| + | #include <stdio.h> |
||
| + | #include <stdlib.h> |
||
| + | #define DB double |
||
| + | #define DO(x,y) for(x=0;x<y;x++) |
||
| + | #include<complex> |
||
| + | typedef std::complex<double> z_type; |
||
| + | #define Re(x) x.real() |
||
| + | #define Im(x) x.imag() |
||
| + | #define I z_type(0.,1.) |
||
| + | #include "conto.cin" |
||
| + | //DB T22=-8.5715740896774235522; |
||
| + | //DB T42= 9.6180745210214273558; |
||
| + | //#include "f21E.cin" |
||
| + | #include "e1etf.cin" |
||
| + | //#include "f15.cin" |
||
| + | int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd; |
||
| + | // int M=201,M1=M+1; |
||
| + | // int N=401,N1=N+1; |
||
| + | int M=81,M1=M+1; |
||
| + | int N=161,N1=N+1; |
||
| + | DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
||
| + | char v[M1*N1]; // v is working array |
||
| + | // FILE *o;o=fopen("f21E.eps","w"); ado(o,0,0,94,92); |
||
| + | // FILE *o;o=fopen("02.eps","w"); ado(o,0,0,214,212); |
||
| + | // FILE *o;o=fopen("be1ezoom.eps","w"); ado(o,87,87); |
||
| + | FILE *o;o=fopen("e1e09b.eps","w"); ado(o,87,87); |
||
| + | fprintf(o,"46 45 translate\n 10 10 scale\n"); |
||
| + | DO(m,M1) X[m]=-4.+.1*(m-.5); |
||
| + | DO(n,N1) Y[n]=-4.+.05*(n-.5); |
||
| + | for(m=-4;m<5;m++) {M(m,-4)L(m,4)} |
||
| + | for(n=-4;n<5;n++) {M( -4,n)L(4,n)} fprintf(o,".006 W 0 0 0 RGB S\n"); |
||
| + | /* |
||
| + | fprintf(o,"/adobe-Roman findfont .6 scalefont setfont\n"); |
||
| + | for(m=-2;m<0;m+=2) {M(-4.7,m-.2) fprintf(o,"(%1d)s\n",m);} |
||
| + | for(m= 0;m<3;m+=2) {M(-4.4,m-.2) fprintf(o,"(%1d)s\n",m);} |
||
| + | for(m=-2;m<0;m+=2) {M(m-.3,-4.48) fprintf(o,"(%1d)s\n",m);} |
||
| + | for(m= 0;m<3;m+=2) {M(m-.16,-4.48) fprintf(o,"(%1d)s\n",m);} |
||
| + | */ |
||
| + | /* |
||
| + | fprintf(o,"/Times-Italic findfont 1 scalefont setfont\n"); |
||
| + | //fprintf(o,"/adobe-italic findfont 1 scalefont setfont\n"); |
||
| + | M(-4.7, 4.5) fprintf(o,"(y)s\n"); |
||
| + | M( 4.6,-4.8) fprintf(o,"(x)s\n"); |
||
| + | M(-4,0)L(4.1,0) M(0,-4)L(0,4.1) fprintf(o,".01 W 1 0 1 RGB S\n"); |
||
| + | */ |
||
| + | |||
| + | //z_type tm,tp,F[M1*N1];; |
||
| + | DO(m,M1)DO(n,N1){ g[m*N1+n]=9999; |
||
| + | f[m*N1+n]=9999;} |
||
| + | DB b=sqrt(2); |
||
| + | DO(m,M1){x=X[m]; printf("x=%6.3f\n",x); |
||
| + | DO(n,N1){y=Y[n]; z=z_type(x,y); |
||
| + | if(abs(z+2.)>.04) |
||
| + | { |
||
| + | //c=F21E(z); |
||
| + | c=E1ETF(z); |
||
| + | // c=F15(z); |
||
| + | p=Re(c); q=Im(c); |
||
| + | if(p>-9999 && p<9999) g[m*N1+n]=p; |
||
| + | if(q>-9999 && q<9999 && fabs(q)>1.e-14) f[m*N1+n]=q; |
||
| + | } |
||
| + | }} |
||
| + | fprintf(o,"1 setlinejoin 2 setlinecap\n"); |
||
| + | p=2.; q=1.1;; |
||
| + | #include "plofu.cin" |
||
| + | |||
| + | fprintf(o,"0 setlinejoin 0 setlinecap\n"); |
||
| + | // p=1.e-15; |
||
| + | // for(n=-10;n<11;n++) {q=p*n; z=z_type(q,0.); printf("%19.15f %19.15f\n",q, Re(TQ2E(z)) ); } |
||
| + | //y=2*M_PI/log(2.); |
||
| + | // y=M_PI/log(log(2)); |
||
| + | //y=9.064720284; |
||
| + | |||
| + | // M(-2,0)L(-10.1, 0) fprintf(o,"0.05 W 1 1 1 RGB S\n"); |
||
| + | // |
||
| + | // DO(n,20){ M(-2.-.4*n,0)L(-2-.4*(n+.5),0) } |
||
| + | // fprintf(o,".11 W 0 0 0 RGB S\n"); |
||
| + | |||
| + | //M(-2,0)L(-4.1, 0) fprintf(o,".1 W 0 0 0 RGB [.14 .14] 0 setdash S\n"); //fails at some printers |
||
| + | |||
| + | //M(-10,0)L(-2,0)fprintf(o,".04 W 1 0 1 RGB S\n"); |
||
| + | fprintf(o,"showpage\n%cTrailer",'%'); fclose(o); |
||
| + | system("epstopdf e1e09b.eps"); |
||
| + | system( "open e1e09b.pdf"); |
||
| + | getchar(); system("killall Preview"); // For macintosh |
||
| + | } |
||
| + | |||
| + | </pre> |
||
| − | ==[[C++]] generator of third map, |
+ | ==[[C++]] generator of third map, b=sqrt(2) approx 1.41== |
| − | Files required: |
+ | /* Files required: |
[[ado.cin]], |
[[ado.cin]], |
||
[[conto.cin]], |
[[conto.cin]], |
||
| − | [[sqrt2f21e.cin]] |
+ | [[sqrt2f21e.cin]] */ |
| + | <pre> |
||
| − | <poem><nomathjax><nowiki> |
||
#include <math.h> |
#include <math.h> |
||
#include <stdio.h> |
#include <stdio.h> |
||
| Line 226: | Line 333: | ||
getchar(); system("killall Preview"); // For macintosh |
getchar(); system("killall Preview"); // For macintosh |
||
} |
} |
||
| + | </pre> |
||
| − | </nowiki></nomathjax></poem> |
||
==[[Latex]] generator of labels== |
==[[Latex]] generator of labels== |
||
| + | <pre> |
||
| − | <poem><nomathjax><nowiki> |
||
| + | \documentclass[12pt,oneside]{book} |
||
| − | </nowiki></nomathjax></poem> |
||
| + | %\documentclass{standalone} |
||
| + | %\usepackage{cmap} |
||
| + | \usepackage{geometry} |
||
| + | \paperheight 520pt |
||
| + | \paperwidth 1520pt |
||
| + | %\paperwidth 1600pt |
||
| + | \textwidth 3800pt |
||
| + | \topmargin -92pt |
||
| + | \oddsidemargin -86pt |
||
| + | %\usepackage[utf8]{inputenc} |
||
| + | %\usepackage[T2A]{fontenc} |
||
| + | %\usepackage[english]{babel} |
||
| + | %\usepackage{latexsym,amsmath,amssymb,amsbsy,graphicx} |
||
| + | \usepackage{rotating} |
||
| + | \large |
||
| + | |||
| + | \usepackage{color} |
||
| + | \newcommand \sx {\scalebox} |
||
| + | \newcommand \rme {{\rm e}} %makes the base of natural logarithms Roman font |
||
| + | \newcommand \rmi {{\rm i}} %imaginary unity is always roman font |
||
| + | \newcommand \rot {\begin{rotate}} |
||
| + | \newcommand \ero {\end{rotate}} |
||
| + | \newcommand \ing \includegraphics |
||
| + | \begin{document} |
||
| + | |||
| + | %\sx{1.65}{\begin{picture}(82,84) |
||
| + | \sx{6}{\begin{picture}(82,84) |
||
| + | \put(0,0){\ing{e1e09a15}} |
||
| + | \put(2,82){\sx{.5}{$y$}} |
||
| + | \put(2,73){\sx{.5}{$3$}} |
||
| + | \put(2,63){\sx{.5}{$2$}} |
||
| + | \put(2,53){\sx{.5}{$1$}} |
||
| + | \put(2,43){\sx{.5}{$0$}} |
||
| + | \put(-2,33){\sx{.5}{$-1$}} |
||
| + | \put(-2,23){\sx{.5}{$-2$}} |
||
| + | \put(-2,13){\sx{.5}{$-3$}} |
||
| + | \put(-2, 3){\sx{.5}{$-4$}} |
||
| + | \put( 1,0){\sx{.5}{$-4$}} |
||
| + | \put(11,0){\sx{.5}{$-3$}} |
||
| + | \put(21,0){\sx{.5}{$-2$}} |
||
| + | \put(31,0){\sx{.5}{$-1$}} |
||
| + | \put(45,0){\sx{.5}{$0$}} |
||
| + | \put(55,0){\sx{.5}{$1$}} |
||
| + | \put(65,0){\sx{.5}{$2$}} |
||
| + | \put(75,0){\sx{.5}{$3$}} |
||
| + | \put(84,.4){\sx{.5}{$x$}} |
||
| + | \put(48,74){\sx{.5}{\rot{71}$v\!=\!1$\ero}} |
||
| + | \put(56,72){\sx{.5}{\rot{39}$v\!=\!0.8$\ero}} |
||
| + | \put(62,65.6){\sx{.5}{\rot{23}$v\!=\!0.6$\ero}} |
||
| + | \put(65,58){\sx{.5}{\rot{13}$v\!=\!0.4$\ero}} |
||
| + | \put(66,50.6){\sx{.5}{\rot{6}$v\!=\!0.2$\ero}} |
||
| + | \put(66,43.6){\sx{.5}{$v\!=\!0$}} |
||
| + | \put(64,37){\sx{.5}{\rot{-7}$v\!=\!-0.2$\ero}} |
||
| + | \put(63,30){\sx{.5}{\rot{-12}$v\!=\!-0.4$\ero}} |
||
| + | \put(43.4,21){\sx{.5}{\rot{-70}$v\!=\!-1$\ero}} |
||
| + | \put(43,32){\sx{.5}{\rot{63}$u\!=\!1$\ero}} |
||
| + | \put(46,26){\sx{.5}{\rot{53}$u\!=\!1.4$\ero}} |
||
| + | \put(49,21){\sx{.5}{\rot{50}$u\!=\!1.6$\ero}} |
||
| + | \put(52,14.4){\sx{.5}{\rot{47}$u\!=\!1.8$\ero}} |
||
| + | \put(58,6){\sx{.5}{\rot{46}$u\!=\!2$\ero}} |
||
| + | \end{picture}} |
||
| + | \sx{6}{\begin{picture}(82,84) |
||
| + | %\sx{1.65}{\begin{picture}(82,84) |
||
| + | \put(0,0){\ing{e1e09b}} |
||
| + | \put(11,0){\sx{.5}{$-3$}} |
||
| + | \put(21,0){\sx{.5}{$-2$}} |
||
| + | \put(31,0){\sx{.5}{$-1$}} |
||
| + | \put(45,0){\sx{.5}{$0$}} |
||
| + | \put(55,0){\sx{.5}{$1$}} |
||
| + | \put(65,0){\sx{.5}{$2$}} |
||
| + | \put(75,0){\sx{.5}{$3$}} |
||
| + | \put(84,.4){\sx{.5}{$x$}} |
||
| + | \put(42,60){\sx{.5}{\rot{86}$v\!=\!1$\ero}} |
||
| + | \put(46,61){\sx{.5}{\rot{79}$v\!=\!0.8$\ero}} |
||
| + | \put(52,62){\sx{.5}{\rot{64}$v\!=\!0.6$\ero}} |
||
| + | \put(58,59){\sx{.5}{\rot{46}$v\!=\!0.4$\ero}} |
||
| + | \put(63,52){\sx{.5}{\rot{26}$v\!=\!0.2$\ero}} |
||
| + | \put(66,43.6){\sx{.5}{$v\!=\!0$}} |
||
| + | \put(60,36){\sx{.5}{\rot{-27}$v\!=\!-0.2$\ero}} |
||
| + | \put(42,14){\sx{.5}{\rot{90}$v\!=\!-1$\ero}} |
||
| + | \put(42,32.3){\sx{.5}{\rot{56}$u\!=\!1$\ero}} |
||
| + | \put(44,26){\sx{.5}{\rot{42}$u\!=\!1.4$\ero}} |
||
| + | \put(47,22){\sx{.5}{\rot{37}$u\!=\!1.6$\ero}} |
||
| + | \put(53,17){\sx{.5}{\rot{32}$u\!=\!1.8$\ero}} |
||
| + | \put(59,9){\sx{.5}{\rot{18}$u\!=\!2$\ero}} |
||
| + | \end{picture}} |
||
| + | \sx{6}{\begin{picture}(80,84) |
||
| + | \put(0,0){\ing{e1e09q2}} |
||
| + | \put(11,0){\sx{.5}{$-3$}} |
||
| + | \put(21,0){\sx{.5}{$-2$}} |
||
| + | \put(31,0){\sx{.5}{$-1$}} |
||
| + | \put(45,0){\sx{.5}{$0$}} |
||
| + | \put(55,0){\sx{.5}{$1$}} |
||
| + | \put(65,0){\sx{.5}{$2$}} |
||
| + | \put(75,0){\sx{.5}{$3$}} |
||
| + | \put(84,.4){\sx{.5}{$x$}} |
||
| + | \put(40.6,57){\sx{.5}{\rot{86}$v\!=\!1$\ero}} |
||
| + | \put(44,58){\sx{.5}{\rot{80}$v\!=\!0.8$\ero}} |
||
| + | \put(49,61){\sx{.5}{\rot{75}$v\!=\!0.6$\ero}} |
||
| + | \put(57,61){\sx{.5}{\rot{70}$v\!=\!0.4$\ero}} |
||
| + | \put(63,54){\sx{.5}{\rot{42}$v\!=\!0.2$\ero}} |
||
| + | \put(66,43.6){\sx{.5}{$v\!=\!0$}} |
||
| + | \put(66,32){\sx{.5}{\rot{-60}$v\!=\!-0.2$\ero}} |
||
| + | \put(24,4.8){\sx{.5}{\rot{31}$v\!=\!-1$\ero}} |
||
| + | \put(42,32.3){\sx{.5}{\rot{56}$u\!=\!1$\ero}} |
||
| + | \put(47,28){\sx{.5}{\rot{48}$u\!=\!1.4$\ero}} |
||
| + | \put(49,24){\sx{.5}{\rot{33}$u\!=\!1.6$\ero}} |
||
| + | \put(50,17){\sx{.5}{\rot{13}$u\!=\!1.8$\ero}} |
||
| + | \put(50,9){\sx{.5}{\rot{-13}$u\!=\!2$\ero}} |
||
| + | \end{picture}} |
||
| + | \end{document} |
||
| + | </pre> |
||
==References== |
==References== |
||
| + | {{ref}} |
||
| − | <references/> |
||
| + | {{fer}} |
||
| + | ==Keywords== |
||
| + | «[[Superfunction]]», |
||
| + | «[[Superfunctions]]», |
||
| + | «[[Tetration]]», |
||
| − | [[Category: |
+ | [[Category:Base sqrt2]] |
[[Category:Base sqrt(2)]] |
[[Category:Base sqrt(2)]] |
||
| − | [[Category:Complex maps]] |
||
| − | [[Category:C++]] |
||
[[Category:Book]] |
[[Category:Book]] |
||
[[Category:BookMap]] |
[[Category:BookMap]] |
||
| + | [[Category:Complex maps]] |
||
| + | [[Category:C++]] |
||
| + | [[Category:E1e]] |
||
[[Category:Holomorphic functions]] |
[[Category:Holomorphic functions]] |
||
[[Category:Latex]] |
[[Category:Latex]] |
||
| + | [[Category:Sqrt2]] |
||
| + | [[Category:Superfunction]] |
||
| + | [[Category:Superfunctions]] |
||
[[Category:Tetration]] |
[[Category:Tetration]] |
||
Latest revision as of 08:39, 13 December 2025
Summary
Figure 17.4 from page 245 of book «Superfunctions»[1], 2020.
It appears also as page 251 of the Russian version «Суперфункции»[2]
Complex maps of tetration \(\mathrm{tet}_b\) to base
\(b\!=\!1.5\) , left,
\(b\!=\!\exp(1/\mathrm e)\) , center, and
\(b\!=\!\sqrt{2}\) , right.
\(f\!=\! \mathrm{tet}(x\!+\!\mathrm i y)\) is shown in the \(x,y\) plane with levels \(~u\!=\!\Re(f)\!=\! \mathrm{const}~\) and levels \(~v\!=\!\Im(f)\!=\! \mathrm{const}~\). The integer levels are shown with thick lines.
This image is close to the figure 9 in the article [3]; the only notations at labels are improved.
Copyleft 2011,2020,2025 by Dmitrii Kouznetsov. You may copy, modify and/or distribute the image for free but the source should be attributed. Attribute your modifications if any.
C++ generator of first map, b=1.5
/* In order to compile the code below, the following files should be loaded: ado.cin, conto.cin, GLxw2048.inc, f2048b15.inc, f15.cin, plofu.cin */
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
using namespace std;
#include<complex>
typedef complex<double> z_type;
// #include <complex.h>
// #define z_type complex<double>
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
//DB T22=-8.5715740896774235522;
//DB T42= 9.6180745210214273558;
//#include "f21E.cin"
//#include "e1etf.cin"
#include "f15.cin"
main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
// int M=201,M1=M+1;
// int N=401,N1=N+1;
int M=81,M1=M+1;
int N=161,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
// FILE *o;o=fopen("f21E.eps","w"); ado(o,0,0,94,92);
// FILE *o;o=fopen("02.eps","w"); ado(o,0,0,214,212);
// FILE *o;o=fopen("be1ezoom.eps","w"); ado(o,0,0,87,87);
FILE *o;o=fopen("b15zoom.eps","w"); ado(o,87,87);
fprintf(o,"46 45 translate\n 10 10 scale\n");
DO(m,M1) X[m]=-4.+.1*(m-.5);
DO(n,N1) Y[n]=-4.+.05*(n-.5);
for(m=-4;m<5;m++) {M(m,-4)L(m,4)}
for(n=-4;n<5;n++) {M( -4,n)L(4,n)} fprintf(o,".006 W 0 0 0 RGB S\n");
fprintf(o,"/adobe-Roman findfont .6 scalefont setfont\n");
for(m=-2;m<0;m+=2) {M(-4.7,m-.2) fprintf(o,"(%1d)s\n",m);}
for(m= 0;m<3;m+=2) {M(-4.4,m-.2) fprintf(o,"(%1d)s\n",m);}
for(m=-2;m<0;m+=2) {M(m-.3,-4.48) fprintf(o,"(%1d)s\n",m);}
for(m= 0;m<3;m+=2) {M(m-.16,-4.48) fprintf(o,"(%1d)s\n",m);}
/*
fprintf(o,"/Times-Italic findfont 1 scalefont setfont\n");
//fprintf(o,"/adobe-italic findfont 1 scalefont setfont\n");
M(-4.7, 4.5) fprintf(o,"(y)s\n");
M( 4.6,-4.8) fprintf(o,"(x)s\n");
M(-4,0)L(4.1,0) M(0,-4)L(0,4.1) fprintf(o,".01 W 1 0 1 RGB S\n");
*/
//z_type tm,tp,F[M1*N1];;
DO(m,M1)DO(n,N1){ g[m*N1+n]=9999;
f[m*N1+n]=9999;}
DB b=sqrt(2);
DO(m,M1){x=X[m]; printf("x=%6.3f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y);
if(abs(z+2.)>.04)
{
// c=F21E(z);
// c=E1ETF(z);
c=F15(z);
p=Re(c); q=Im(c);
if(p>-9999 && p<9999) g[m*N1+n]=p;
if(q>-9999 && q<9999 && fabs(q)>1.e-14) f[m*N1+n]=q;
}
}}
fprintf(o,"1 setlinejoin 2 setlinecap\n");
p=2.; q=1.1;;
#include "plofu.cin"
fprintf(o,"0 setlinejoin 0 setlinecap\n");
// p=1.e-15;
// for(n=-10;n<11;n++) {q=p*n; z=z_type(q,0.); printf("%19.15f %19.15f\n",q, Re(TQ2E(z)) )
; }
//y=2*M_PI/log(2.);
// y=M_PI/log(log(2));
//y=9.064720284;
// M(-2,0)L(-10.1, 0) fprintf(o,"0.05 W 1 1 1 RGB S\n");
//
// DO(n,20){ M(-2.-.4*n,0)L(-2-.4*(n+.5),0) }
// fprintf(o,".11 W 0 0 0 RGB S\n");
//M(-2,0)L(-4.1, 0) fprintf(o,".1 W 0 0 0 RGB [.14 .14] 0 setdash S\n"); //fails at some pri
nters
//M(-10,0)L(-2,0)fprintf(o,".04 W 1 0 1 RGB S\n");
fprintf(o,"showpage\n");
fprintf(o,"%cTrailer\n",'%');
fclose(o);
// system( "gv b15zoom.eps &"); //for UNIX
system( "open b15zoom.eps"); //for macintosh
system("epstopdf b15zoom.eps");
// system( "xpdf be1ezoom.pdf"); // for LINUX
getchar(); system("killall Preview"); // For macintosh
}
e1e09b.cc: C++ generator of second map
/* ado.cin, conto.cin, e1etf.cin should be loaded */
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
#include<complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
//DB T22=-8.5715740896774235522;
//DB T42= 9.6180745210214273558;
//#include "f21E.cin"
#include "e1etf.cin"
//#include "f15.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
// int M=201,M1=M+1;
// int N=401,N1=N+1;
int M=81,M1=M+1;
int N=161,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
// FILE *o;o=fopen("f21E.eps","w"); ado(o,0,0,94,92);
// FILE *o;o=fopen("02.eps","w"); ado(o,0,0,214,212);
// FILE *o;o=fopen("be1ezoom.eps","w"); ado(o,87,87);
FILE *o;o=fopen("e1e09b.eps","w"); ado(o,87,87);
fprintf(o,"46 45 translate\n 10 10 scale\n");
DO(m,M1) X[m]=-4.+.1*(m-.5);
DO(n,N1) Y[n]=-4.+.05*(n-.5);
for(m=-4;m<5;m++) {M(m,-4)L(m,4)}
for(n=-4;n<5;n++) {M( -4,n)L(4,n)} fprintf(o,".006 W 0 0 0 RGB S\n");
/*
fprintf(o,"/adobe-Roman findfont .6 scalefont setfont\n");
for(m=-2;m<0;m+=2) {M(-4.7,m-.2) fprintf(o,"(%1d)s\n",m);}
for(m= 0;m<3;m+=2) {M(-4.4,m-.2) fprintf(o,"(%1d)s\n",m);}
for(m=-2;m<0;m+=2) {M(m-.3,-4.48) fprintf(o,"(%1d)s\n",m);}
for(m= 0;m<3;m+=2) {M(m-.16,-4.48) fprintf(o,"(%1d)s\n",m);}
*/
/*
fprintf(o,"/Times-Italic findfont 1 scalefont setfont\n");
//fprintf(o,"/adobe-italic findfont 1 scalefont setfont\n");
M(-4.7, 4.5) fprintf(o,"(y)s\n");
M( 4.6,-4.8) fprintf(o,"(x)s\n");
M(-4,0)L(4.1,0) M(0,-4)L(0,4.1) fprintf(o,".01 W 1 0 1 RGB S\n");
*/
//z_type tm,tp,F[M1*N1];;
DO(m,M1)DO(n,N1){ g[m*N1+n]=9999;
f[m*N1+n]=9999;}
DB b=sqrt(2);
DO(m,M1){x=X[m]; printf("x=%6.3f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y);
if(abs(z+2.)>.04)
{
//c=F21E(z);
c=E1ETF(z);
// c=F15(z);
p=Re(c); q=Im(c);
if(p>-9999 && p<9999) g[m*N1+n]=p;
if(q>-9999 && q<9999 && fabs(q)>1.e-14) f[m*N1+n]=q;
}
}}
fprintf(o,"1 setlinejoin 2 setlinecap\n");
p=2.; q=1.1;;
#include "plofu.cin"
fprintf(o,"0 setlinejoin 0 setlinecap\n");
// p=1.e-15;
// for(n=-10;n<11;n++) {q=p*n; z=z_type(q,0.); printf("%19.15f %19.15f\n",q, Re(TQ2E(z)) ); }
//y=2*M_PI/log(2.);
// y=M_PI/log(log(2));
//y=9.064720284;
// M(-2,0)L(-10.1, 0) fprintf(o,"0.05 W 1 1 1 RGB S\n");
//
// DO(n,20){ M(-2.-.4*n,0)L(-2-.4*(n+.5),0) }
// fprintf(o,".11 W 0 0 0 RGB S\n");
//M(-2,0)L(-4.1, 0) fprintf(o,".1 W 0 0 0 RGB [.14 .14] 0 setdash S\n"); //fails at some printers
//M(-10,0)L(-2,0)fprintf(o,".04 W 1 0 1 RGB S\n");
fprintf(o,"showpage\n%cTrailer",'%'); fclose(o);
system("epstopdf e1e09b.eps");
system( "open e1e09b.pdf");
getchar(); system("killall Preview"); // For macintosh
}
C++ generator of third map, b=sqrt(2) approx 1.41
/* Files required: ado.cin, conto.cin, sqrt2f21e.cin */
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
#include<complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
DB T22=-8.5715740896774235522;
DB T42= 9.6180745210214273558;
//#include "f21E.cin"
#include "sqrt2f21e.cin"
//#include "e1etf.cin"
//#include "f15.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
// int M=201,M1=M+1;
// int N=401,N1=N+1;
int M=81,M1=M+1;
int N=161,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
// FILE *o;o=fopen("f21E.eps","w"); ado(o,0,0,94,92);
// FILE *o;o=fopen("02.eps","w"); ado(o,0,0,214,212);
// FILE *o;o=fopen("bq2zoom.eps","w"); ado(o,87,87);
FILE *o;o=fopen("e1e09q2.eps","w"); ado(o,87,87);
fprintf(o,"46 45 translate\n 10 10 scale\n");
DO(m,M1) X[m]=-4.+.1*(m-.5);
DO(n,N1) Y[n]=-4.+.05*(n-.5);
for(m=-4;m<5;m++) {M(m,-4)L(m,4)}
for(n=-4;n<5;n++) {M( -4,n)L(4,n)} fprintf(o,".006 W 0 0 0 RGB S\n");
/*
fprintf(o,"/adobe-Roman findfont .6 scalefont setfont\n");
for(m=-2;m<0;m+=2) {M(-4.7,m-.2) fprintf(o,"(%1d)s\n",m);}
for(m= 0;m<3;m+=2) {M(-4.4,m-.2) fprintf(o,"(%1d)s\n",m);}
for(m=-2;m<0;m+=2) {M(m-.3,-4.48) fprintf(o,"(%1d)s\n",m);}
for(m= 0;m<3;m+=2) {M(m-.16,-4.48) fprintf(o,"(%1d)s\n",m);}
*/
/*
fprintf(o,"/Times-Italic findfont 1 scalefont setfont\n");
//fprintf(o,"/adobe-italic findfont 1 scalefont setfont\n");
M(-4.7, 4.5) fprintf(o,"(y)s\n");
M( 4.6,-4.8) fprintf(o,"(x)s\n");
M(-4,0)L(4.1,0) M(0,-4)L(0,4.1) fprintf(o,".01 W 1 0 1 RGB S\n");
*/
//z_type tm,tp,F[M1*N1];;
DO(m,M1)DO(n,N1){ g[m*N1+n]=9999;
f[m*N1+n]=9999;}
DB b=sqrt(2);
DO(m,M1){x=X[m]; printf("x=%6.3f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y);
if(abs(z+2.)>.04)
{
c=F21E(z);
//c=E1ETF(z);
// c=F15(z);
p=Re(c); q=Im(c);
if(p>-9999 && p<9999) g[m*N1+n]=p;
if(q>-9999 && q<9999 && fabs(q)>1.e-14) f[m*N1+n]=q;
}
}}
fprintf(o,"1 setlinejoin 2 setlinecap\n");
p=2.; q=1.1;;
#include "plofu.cin"
fprintf(o,"0 setlinejoin 0 setlinecap\n");
// p=1.e-15;
// for(n=-10;n<11;n++) {q=p*n; z=z_type(q,0.); printf("%19.15f %19.15f\n",q, Re(TQ2E(z)) ); }
//y=2*M_PI/log(2.);
// y=M_PI/log(log(2));
//y=9.064720284;
// M(-2,0)L(-10.1, 0) fprintf(o,"0.05 W 1 1 1 RGB S\n");
//
// DO(n,20){ M(-2.-.4*n,0)L(-2-.4*(n+.5),0) }
// fprintf(o,".11 W 0 0 0 RGB S\n");
//M(-2,0)L(-4.1, 0) fprintf(o,".1 W 0 0 0 RGB [.14 .14] 0 setdash S\n"); //fails at some printers
//M(-10,0)L(-2,0)fprintf(o,".04 W 1 0 1 RGB S\n");
fprintf(o,"showpage\n%cTrailer",'%'); fclose(o);
system("epstopdf e1e09q2.eps");
system( "open e1e09q2.pdf");
getchar(); system("killall Preview"); // For macintosh
}
Latex generator of labels
\documentclass[12pt,oneside]{book}
%\documentclass{standalone}
%\usepackage{cmap}
\usepackage{geometry}
\paperheight 520pt
\paperwidth 1520pt
%\paperwidth 1600pt
\textwidth 3800pt
\topmargin -92pt
\oddsidemargin -86pt
%\usepackage[utf8]{inputenc}
%\usepackage[T2A]{fontenc}
%\usepackage[english]{babel}
%\usepackage{latexsym,amsmath,amssymb,amsbsy,graphicx}
\usepackage{rotating}
\large
\usepackage{color}
\newcommand \sx {\scalebox}
\newcommand \rme {{\rm e}} %makes the base of natural logarithms Roman font
\newcommand \rmi {{\rm i}} %imaginary unity is always roman font
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\newcommand \ing \includegraphics
\begin{document}
%\sx{1.65}{\begin{picture}(82,84)
\sx{6}{\begin{picture}(82,84)
\put(0,0){\ing{e1e09a15}}
\put(2,82){\sx{.5}{$y$}}
\put(2,73){\sx{.5}{$3$}}
\put(2,63){\sx{.5}{$2$}}
\put(2,53){\sx{.5}{$1$}}
\put(2,43){\sx{.5}{$0$}}
\put(-2,33){\sx{.5}{$-1$}}
\put(-2,23){\sx{.5}{$-2$}}
\put(-2,13){\sx{.5}{$-3$}}
\put(-2, 3){\sx{.5}{$-4$}}
\put( 1,0){\sx{.5}{$-4$}}
\put(11,0){\sx{.5}{$-3$}}
\put(21,0){\sx{.5}{$-2$}}
\put(31,0){\sx{.5}{$-1$}}
\put(45,0){\sx{.5}{$0$}}
\put(55,0){\sx{.5}{$1$}}
\put(65,0){\sx{.5}{$2$}}
\put(75,0){\sx{.5}{$3$}}
\put(84,.4){\sx{.5}{$x$}}
\put(48,74){\sx{.5}{\rot{71}$v\!=\!1$\ero}}
\put(56,72){\sx{.5}{\rot{39}$v\!=\!0.8$\ero}}
\put(62,65.6){\sx{.5}{\rot{23}$v\!=\!0.6$\ero}}
\put(65,58){\sx{.5}{\rot{13}$v\!=\!0.4$\ero}}
\put(66,50.6){\sx{.5}{\rot{6}$v\!=\!0.2$\ero}}
\put(66,43.6){\sx{.5}{$v\!=\!0$}}
\put(64,37){\sx{.5}{\rot{-7}$v\!=\!-0.2$\ero}}
\put(63,30){\sx{.5}{\rot{-12}$v\!=\!-0.4$\ero}}
\put(43.4,21){\sx{.5}{\rot{-70}$v\!=\!-1$\ero}}
\put(43,32){\sx{.5}{\rot{63}$u\!=\!1$\ero}}
\put(46,26){\sx{.5}{\rot{53}$u\!=\!1.4$\ero}}
\put(49,21){\sx{.5}{\rot{50}$u\!=\!1.6$\ero}}
\put(52,14.4){\sx{.5}{\rot{47}$u\!=\!1.8$\ero}}
\put(58,6){\sx{.5}{\rot{46}$u\!=\!2$\ero}}
\end{picture}}
\sx{6}{\begin{picture}(82,84)
%\sx{1.65}{\begin{picture}(82,84)
\put(0,0){\ing{e1e09b}}
\put(11,0){\sx{.5}{$-3$}}
\put(21,0){\sx{.5}{$-2$}}
\put(31,0){\sx{.5}{$-1$}}
\put(45,0){\sx{.5}{$0$}}
\put(55,0){\sx{.5}{$1$}}
\put(65,0){\sx{.5}{$2$}}
\put(75,0){\sx{.5}{$3$}}
\put(84,.4){\sx{.5}{$x$}}
\put(42,60){\sx{.5}{\rot{86}$v\!=\!1$\ero}}
\put(46,61){\sx{.5}{\rot{79}$v\!=\!0.8$\ero}}
\put(52,62){\sx{.5}{\rot{64}$v\!=\!0.6$\ero}}
\put(58,59){\sx{.5}{\rot{46}$v\!=\!0.4$\ero}}
\put(63,52){\sx{.5}{\rot{26}$v\!=\!0.2$\ero}}
\put(66,43.6){\sx{.5}{$v\!=\!0$}}
\put(60,36){\sx{.5}{\rot{-27}$v\!=\!-0.2$\ero}}
\put(42,14){\sx{.5}{\rot{90}$v\!=\!-1$\ero}}
\put(42,32.3){\sx{.5}{\rot{56}$u\!=\!1$\ero}}
\put(44,26){\sx{.5}{\rot{42}$u\!=\!1.4$\ero}}
\put(47,22){\sx{.5}{\rot{37}$u\!=\!1.6$\ero}}
\put(53,17){\sx{.5}{\rot{32}$u\!=\!1.8$\ero}}
\put(59,9){\sx{.5}{\rot{18}$u\!=\!2$\ero}}
\end{picture}}
\sx{6}{\begin{picture}(80,84)
\put(0,0){\ing{e1e09q2}}
\put(11,0){\sx{.5}{$-3$}}
\put(21,0){\sx{.5}{$-2$}}
\put(31,0){\sx{.5}{$-1$}}
\put(45,0){\sx{.5}{$0$}}
\put(55,0){\sx{.5}{$1$}}
\put(65,0){\sx{.5}{$2$}}
\put(75,0){\sx{.5}{$3$}}
\put(84,.4){\sx{.5}{$x$}}
\put(40.6,57){\sx{.5}{\rot{86}$v\!=\!1$\ero}}
\put(44,58){\sx{.5}{\rot{80}$v\!=\!0.8$\ero}}
\put(49,61){\sx{.5}{\rot{75}$v\!=\!0.6$\ero}}
\put(57,61){\sx{.5}{\rot{70}$v\!=\!0.4$\ero}}
\put(63,54){\sx{.5}{\rot{42}$v\!=\!0.2$\ero}}
\put(66,43.6){\sx{.5}{$v\!=\!0$}}
\put(66,32){\sx{.5}{\rot{-60}$v\!=\!-0.2$\ero}}
\put(24,4.8){\sx{.5}{\rot{31}$v\!=\!-1$\ero}}
\put(42,32.3){\sx{.5}{\rot{56}$u\!=\!1$\ero}}
\put(47,28){\sx{.5}{\rot{48}$u\!=\!1.4$\ero}}
\put(49,24){\sx{.5}{\rot{33}$u\!=\!1.6$\ero}}
\put(50,17){\sx{.5}{\rot{13}$u\!=\!1.8$\ero}}
\put(50,9){\sx{.5}{\rot{-13}$u\!=\!2$\ero}}
\end{picture}}
\end{document}
References
- ↑
https://www.amazon.co.jp/-/en/Dmitrii-Kouznetsov/dp/6202672862
https://www.morebooks.de/shop-ui/shop/product/978-620-2-67286-3
https://mizugadro.mydns.jp/BOOK/458.pdf Dmitrii Kouznetsov. Superfunctions. Lambert Academic Piblishing, 2020. - ↑ https://mizugadro.mydns.jp/BOOK/202.pdf Дмитрий Кузнецов. Суперфункции. Lambert Academic Piblishing, 2014.
- ↑
https://www.ams.org/journals/mcom/2012-81-280/S0025-5718-2012-02590-7/S0025-5718-2012-02590-7.pdf
https://www.researchgate.net/publication/51892955_Computation_of_the_Two_Regular_Super-Exponentials_to_base_exp1e
http://mizugadro.mydns.jp/PAPERS/2012e1eMcom2590.pdf H.Trappmann, D.Kouznetsov. Computation of the Two Regular Super-Exponentials to base exp(1/e). Mathematics of Computation, 2012, 81, February 8. p.2207-2227.
Keywords
«Superfunction», «Superfunctions», «Tetration»,
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 08:37, 13 December 2025 | 1,514 × 518 (364 KB) | T (talk | contribs) | more labels | |
| 17:50, 20 June 2013 | 2,234 × 711 (883 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following page uses this file: