Difference between revisions of "File:Filogbigmap100.png"
($ -> \( ; description ; refs ; pre ; keywords) |
|||
| (One intermediate revision by one other user not shown) | |||
| Line 1: | Line 1: | ||
| + | {{oq|Filogbigmap100.png|Original file (2,870 × 2,851 pixels, file size: 847 KB, MIME type: image/png)|800}} |
||
| ⚫ | |||
| + | |||
| ⚫ | |||
| ⚫ | |||
| + | |||
| + | Fig.18.1 from page 247 of book «[[Superfunctions]]» |
||
| + | <ref name="be"> |
||
| + | https://mizugadro.mydns.jp/BOOK/468.pdf |
||
| + | D.Kouznetsov. [[Superfunctions]]. [[Lambert Academic Publishing]], 2020. |
||
| + | </ref>, 2020. |
||
| + | |||
| + | The same picture appears also as Рис.18.1 at page 254 of the Russian version «[[Суперфункции]]» |
||
| + | <ref name="br"> |
||
| + | https://mizugadro.mydns.jp/BOOK/202.pdf |
||
| + | Д.Кузнецов. [[Суперфункции]]. [[Lambert Academic Publishing]], 2014. |
||
| + | </ref>, 2014. |
||
| + | |||
| ⚫ | |||
| + | |||
| + | The zooming of the central part of this map is shown in figure at tight. |
||
==Semantics of Filog== |
==Semantics of Filog== |
||
| − | + | \(\mathrm{Filog}(z)\) expresses the [[fixed point]] of [[logarithm]] to base \(b\!=\!\exp(z)\). |
|
Another fixed point to the same base can be expressed with |
Another fixed point to the same base can be expressed with |
||
| ⚫ | |||
| − | |||
| ⚫ | |||
==Algorithm of evaluation== |
==Algorithm of evaluation== |
||
[[Filog]] is expressed through the [[Tania function]]: |
[[Filog]] is expressed through the [[Tania function]]: |
||
| − | + | \[\mathrm{Filog}(z)= \frac{\mathrm{Tania}\!\big(\ln(z)-1-\mathrm{i}\big)}{-z}\] |
|
==Representation of the function== |
==Representation of the function== |
||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| − | |||
| ⚫ | |||
| − | levels |
+ | levels \(v=\Im(f)=\mathrm{cont}\); thick lines correspond to the integer values. |
| − | The additional thin gridlines |
+ | The additional thin gridlines \(x\!=\!\exp(-1)\) and \(x\!=\!\pi/2\) are drawn. The first of them goes through the branchpoint \(z=1/\mathrm e\), which is the branch point; the second goes through the point \(z=\pi/2\), where the fixed points are \(\pm \mathrm i\). |
==Properties of the function== |
==Properties of the function== |
||
| − | + | \(\mathrm{Filog}(z)\) has two singularities at \(z\!=\!0\) and at \(z\!=\!\exp(-1)\); the cutline is directed to the negative part of the real axis. |
|
| − | Except the cutline, the function is holomorphic. At the real values of the argument |
+ | Except the cutline, the function is holomorphic. At the real values of the argument \(0\!<\!z\!<\!\exp(-1)\), both at the upper side of the cut and at the lower side of the cut, the function has real values; |
| + | in particular, at \(z=\ln\big(\sqrt{2}\big)\), there values are integer |
||
<ref name="sqrt2"> |
<ref name="sqrt2"> |
||
| − | + | https://www.ams.org/journals/mcom/2010-79-271/S0025-5718-10-02342-2/home.html D.Kouznetsov, H.Trappmann. Portrait of the four regular super-exponentials to base sqrt(2). Mathematics of Computation, 2010, v.79, p.1727-1756. |
|
</ref>: |
</ref>: |
||
| − | : |
+ | : \(\mathrm{Filog}(z+\mathrm i o)=2\) |
| − | : |
+ | : \(\mathrm{Filog}(z-\mathrm i o)=4\) |
Approaching the branchpoint, the jump at the cut vanishes: |
Approaching the branchpoint, the jump at the cut vanishes: |
||
| + | \[ |
||
| − | |||
| − | + | \lim_{x\rightarrow 1/\mathrm e} \mathrm{Filog}(x+\mathrm i o)= \lim_{x\rightarrow 1/\mathrm e} \mathrm{Filog}(x-\mathrm i o)= \mathrm e |
|
| + | \] |
||
==Generator of curves== |
==Generator of curves== |
||
| − | / |
+ | /* Files [[ado.cin]], [[conto.cin]] and [[filog.cin]] should be loaded to the working directory for the compilation of the [[C++]] code below:*/ |
| + | <pre> |
||
#include <math.h> |
#include <math.h> |
||
#include <stdio.h> |
#include <stdio.h> |
||
| Line 96: | Line 114: | ||
// Copyleft 2012 by Dmitrii Kouznetsov |
// Copyleft 2012 by Dmitrii Kouznetsov |
||
} |
} |
||
| + | </pre> |
||
| − | |||
==Generator of labels== |
==Generator of labels== |
||
| − | For the compilation of the [[Latex]] source below, the curves of the [[complex map]] should be already generated and stored in file |
+ | %For the compilation of the [[Latex]] source below, the curves of the [[complex map]] should be already generated and stored in file fIlog.pdf with the [[C++]] code above. |
| + | <pre> |
||
| − | fIlog.pdf with the [[C++]] code above. |
||
| − | |||
| − | <nowiki> |
||
\documentclass[12pt]{article} %<br> |
\documentclass[12pt]{article} %<br> |
||
\usepackage{geometry} %<br> |
\usepackage{geometry} %<br> |
||
| Line 158: | Line 174: | ||
%Copyleft 2012 by Dmitrii Kouznetsov |
%Copyleft 2012 by Dmitrii Kouznetsov |
||
| − | </ |
+ | </pre> |
The resulting [[PDF]] file is converted to [[PNG]] with 100 pixels/inch resolution. |
The resulting [[PDF]] file is converted to [[PNG]] with 100 pixels/inch resolution. |
||
| − | == |
+ | ==Refewnces== |
| + | {{ref}} |
||
| − | <references/> |
||
| + | |||
| + | {{fer}} |
||
==Keywords== |
==Keywords== |
||
| − | [[ |
+ | «[[Complex map]]», |
| − | [[ |
+ | «[[Fixed point]]», |
| − | [[ |
+ | «[[Filog]]», |
| − | [[ |
+ | «[[Superfunction]]», |
| + | «[[Superfunctions]]», |
||
| − | [[Complex map]] |
||
| + | «[[Tania function]]», |
||
| + | «[[Tetration]]», |
||
| + | |||
| + | «[[Суперфункции]]», |
||
| − | [[Category:Complex |
+ | [[Category:Complex map]] |
[[Category:Tania function]] |
[[Category:Tania function]] |
||
[[Category:Tetration]] |
[[Category:Tetration]] |
||
| + | [[Category:Book]] |
||
| + | [[Category:BookMap]] |
||
| + | [[Category:C++]] |
||
| + | [[Category:Latex]] |
||
| + | [[Category:Superfunctions]] |
||
Latest revision as of 15:06, 3 January 2026
Fig.18.1 from page 247 of book «Superfunctions» [1], 2020.
The same picture appears also as Рис.18.1 at page 254 of the Russian version «Суперфункции» [2], 2014.
The figure shows the Complex map of function Filog.
The zooming of the central part of this map is shown in figure at tight.
Semantics of Filog
\(\mathrm{Filog}(z)\) expresses the fixed point of logarithm to base \(b\!=\!\exp(z)\).
Another fixed point to the same base can be expressed with \[\mathrm{Filog}(z^*)^*\]
Algorithm of evaluation
Filog is expressed through the Tania function: \[\mathrm{Filog}(z)= \frac{\mathrm{Tania}\!\big(\ln(z)-1-\mathrm{i}\big)}{-z}\]
Representation of the function
\(f=\mathrm{Filog}(x+\mathrm{i} y)\) is shown in the \(x,y\) plane with
levels \(u=\Re(f)=\mathrm{cont}\) and
levels \(v=\Im(f)=\mathrm{cont}\); thick lines correspond to the integer values.
The additional thin gridlines \(x\!=\!\exp(-1)\) and \(x\!=\!\pi/2\) are drawn. The first of them goes through the branchpoint \(z=1/\mathrm e\), which is the branch point; the second goes through the point \(z=\pi/2\), where the fixed points are \(\pm \mathrm i\).
Properties of the function
\(\mathrm{Filog}(z)\) has two singularities at \(z\!=\!0\) and at \(z\!=\!\exp(-1)\); the cutline is directed to the negative part of the real axis.
Except the cutline, the function is holomorphic. At the real values of the argument \(0\!<\!z\!<\!\exp(-1)\), both at the upper side of the cut and at the lower side of the cut, the function has real values; in particular, at \(z=\ln\big(\sqrt{2}\big)\), there values are integer [3]:
- \(\mathrm{Filog}(z+\mathrm i o)=2\)
- \(\mathrm{Filog}(z-\mathrm i o)=4\)
Approaching the branchpoint, the jump at the cut vanishes: \[ \lim_{x\rightarrow 1/\mathrm e} \mathrm{Filog}(x+\mathrm i o)= \lim_{x\rightarrow 1/\mathrm e} \mathrm{Filog}(x-\mathrm i o)= \mathrm e \]
Generator of curves
/* Files ado.cin, conto.cin and filog.cin should be loaded to the working directory for the compilation of the C++ code below:*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
using namespace std;
#include <complex>
typedef complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
#include "filog.cin"
main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
int M=400,M1=M+1;
int N=401,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
FILE *o;o=fopen("filogbig.eps","w");ado(o,2004,2004);
fprintf(o,"1002 1002 translate\n 100 100 scale\n");
DO(m,M1) X[m]=-10.+.05*(m-.2);
DO(n,200)Y[n]=-10.+.05*n;
Y[200]=-.0001;
Y[201]= .0001;
for(n=202;n<N1;n++) Y[n]=-10.+.05*(n-1.);
for(m=-10;m<11;m++){M(m,-10)L(m,10)}
for(n=-10;n<11;n++){M( -10,n)L(10,n)}
fprintf(o,".005 W 0 0 0 RGB S\n");
M(exp(-1.),-1)
L(exp(-1.), 1)
M(M_PI/2.,-1)
L(M_PI/2., 1)
fprintf(o,".003 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;}
DO(m,M1){x=X[m]; //printf("%5.2f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y);
// c=Tania(z_type(-1.,-M_PI)+log(z))/(-z);
c=Filog(z);
p=Re(c);q=Im(c);
if(p>-15. && p<15. && q>-15. && q<15. ){ g[m*N1+n]=p;f[m*N1+n]=q;}
}}
fprintf(o,"1 setlinejoin 1 setlinecap\n"); p=3.;q=1;
for(m=-10;m<10;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".001 W 0 .6 0 RGB S\n");
for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".001 W .9 0 0 RGB S\n");
for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".001 W 0 0 .9 RGB S\n");
for(m=1;m<14;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".004 W .9 0 0 RGB S\n");
for(m=1;m<14;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".004 W 0 0 .9 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".004 W .6 0 .6 RGB S\n");
for(m=-11;m<14;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".004 W 0 0 0 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf filogbig.eps");
system( "open filogbig.pdf"); //for mac
// getchar(); system("killall Preview"); // for mac
// Copyleft 2012 by Dmitrii Kouznetsov
}
Generator of labels
%For the compilation of the Latex source below, the curves of the complex map should be already generated and stored in file fIlog.pdf with the C++ code above.
\documentclass[12pt]{article} %<br>
\usepackage{geometry} %<br>
\paperwidth 2074pt %<br>
\paperheight 2060pt %<br>
\topmargin -96pt %<br>
\oddsidemargin -80pt %<br>
\textwidth 2090pt %<br>
\textheight 2066pt %<br>
\usepackage{graphicx} %<br>
\usepackage{rotating} %<br>
\newcommand \rot {\begin{rotate}} %<br>
\newcommand \ero {\end{rotate}} %<br>
\newcommand \rme {\mathrm{e}} %<br>
\newcommand \sx {\scalebox} %<br>
\begin{document} %<br>
\begin{picture}(2018,2040) %<br>
\put(50,40){\includegraphics{filogbig}} %<br>
\put(16,2024){\sx{4.3}{$y$}} %<br>
\put(16,1828){\sx{4.2}{$8$}} %<br>
\put(16,1628){\sx{4.2}{$6$}} %<br>
\put(16,1428){\sx{4.2}{$4$}} %<br>
\put(16,1228){\sx{4.2}{$2$}} %<br>
\put(16,1028){\sx{4.2}{$0$}} %<br>
\put(-11,828){\sx{4}{$-2$}} %<br>
\put(-11,628){\sx{4}{$-4$}} %<br>
\put(-11,428){\sx{4}{$-6$}} %<br>
\put(-11,228){\sx{4}{$-8$}} %<br>
\put(-8,0){\sx{4}{$-10$}} %<br>
\put(204,0){\sx{4}{$-8$}} %<br>
\put(404,0){\sx{4}{$-6$}} %<br>
\put(604,0){\sx{4}{$-4$}} %<br>
\put(804,0){\sx{4}{$-2$}} %<br>
\put(1046,0){\sx{4}{$0$}} %<br>
\put(1246,0){\sx{4}{$2$}} %<br>
\put(1446,0){\sx{4}{$4$}} %<br>
\put(1646,0){\sx{4}{$6$}} %<br>
\put(1846,0){\sx{4}{$8$}} %<br>
\put(2036,0){\sx{4.2}{$x$}} %<br>
%\put(40, 2){\sx{.8}{$1/\rme$}} %<br>
%\put(108, 0){\sx{1}{$1$}} %<br>
%\put(164, 2){\sx{.8}{$\pi/2$}} %<br>
\put(1600,1480){\sx{6}{\rot{55}$u\!=\!0$ \ero} } %<br>
\put(270,1240){\sx{6}{\rot{60}$u\!=\!0.2$ \ero} } %<br>
\put(800,1070){\sx{6}{\rot{55}$u\!=\!0.4$ \ero} } %<br>
\put(90,910){\sx{6}{\rot{16}$u\!=\!0$ \ero} } %<br>
\put(286,470){\sx{6}{\rot{70}$u\!=\!-0.2$ \ero} } %<br>
\put(1686,970){\sx{6}{\rot{-30}$u\!=\!-0.2$ \ero} } %<br>
\put(1686,610){\sx{6}{\rot{26}$v\!=\!0.2$ \ero} } %<br>
\put(1316,210){\sx{6}{\rot{-56}$v\!=\!0$ \ero} } %<br>
\put( 330,444){\sx{6}{\rot{5}$v\!=\!-0.4$ \ero} } %<br>
\put( 700,10){\sx{6}{\rot{56}$v\!=\!-0.2$ \ero} } %<br>
\end{picture} %<br>
\end{document} %<br>
%Copyleft 2012 by Dmitrii Kouznetsov
The resulting PDF file is converted to PNG with 100 pixels/inch resolution.
Refewnces
- ↑ https://mizugadro.mydns.jp/BOOK/468.pdf D.Kouznetsov. Superfunctions. Lambert Academic Publishing, 2020.
- ↑ https://mizugadro.mydns.jp/BOOK/202.pdf Д.Кузнецов. Суперфункции. Lambert Academic Publishing, 2014.
- ↑ https://www.ams.org/journals/mcom/2010-79-271/S0025-5718-10-02342-2/home.html D.Kouznetsov, H.Trappmann. Portrait of the four regular super-exponentials to base sqrt(2). Mathematics of Computation, 2010, v.79, p.1727-1756.
Keywords
«Complex map», «Fixed point», «Filog», «Superfunction», «Superfunctions», «Tania function», «Tetration»,
«Суперфункции»,
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 17:50, 20 June 2013 | 2,870 × 2,851 (847 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following 2 pages use this file: