Difference between revisions of "File:Ackerplot400.jpg"

From TORI
Jump to navigation Jump to search
($ -> \( ; description ; refs ; pre ; keywords)
 
Line 1: Line 1:
  +
{{oq|Ackerplot400.jpg|Original file ‎(3,355 × 4,477 pixels, file size: 805 KB, MIME type: image/jpeg)|600}}
[[Explicit plot]] of the 5 [[Ackermann function]]s to base $\mathrm e$
 
   
  +
Fig.19.7 from page 266 of book «[[Superfunctions]]»<ref name="be">
$y=A_{\mathrm e,n}(x)~$ for $n=1,2,3,4,5$
 
  +
https://mizugadro.mydns.jp/BOOK/468.pdf
  +
D.Kouznetsov. [[Superfunctions]]. [[Lambert Academic Publishing]], 2020.
  +
</ref>, 2020.
   
  +
This picture is used also as Рис.19.6 at page 273 of the Russian version «[[Суперфункции]]»<ref name name="br">
$A_{\mathrm e,1}(z)=\mathrm e + z$
 
  +
https://mizugadro.mydns.jp/BOOK/202.pdf
  +
Д.Кузнецов. [[Суперфункции]]. [[Lambert Academic Publishing]], 2014.
  +
</ref>, 2014.
   
 
The picture shows the [[Explicit plot]]s of the 5 [[Ackermann function]]s to base \(\mathrm e\)
$A_{\mathrm e,2}(z)=\mathrm e \,z$
 
   
$A_{\mathrm e,3}(z)=\mathrm e^z~$ , see [[exp]]
+
\(y=A_{\mathrm e,n}(x)~\) for \(n=1,2,3,4,5\)
   
$A_{\mathrm e,4}(z)=\mathrm{tet}(z)~$ , see [[natural tetration]]
+
\(A_{\mathrm e,1}(z)=\mathrm e + z\)
   
$A_{\mathrm e,5}(z)=\mathrm{pen}(z)~$ , see [[natural pentation]]
+
\(A_{\mathrm e,2}(z)=\mathrm e \,z\)
  +
 
\(A_{\mathrm e,3}(z)=\mathrm e^z~\) , see [[exponential]]
  +
 
\(A_{\mathrm e,4}(z)=\mathrm{tet}(z)~\) , see [[natural tetration]]
  +
  +
\(A_{\mathrm e,5}(z)=\mathrm{pen}(z)~\) , see [[natural pentation]]
   
 
==General properties of [[Ackermann function]]s==
 
==General properties of [[Ackermann function]]s==
Line 17: Line 29:
 
The [[Ackermann function]], or ackermann, to base $b$ satisfies the [[transfer equation]]
 
The [[Ackermann function]], or ackermann, to base $b$ satisfies the [[transfer equation]]
   
$A_{b,n}(z\!+\!1)=A_{b,n-1}\big( A_{b,n}(z) \Big)$
+
\(A_{b,n}(z\!+\!1)=A_{b,n-1}\big( A_{b,n}(z) \Big)\)
   
and the "initial" conditions $~A_{b,1}(z)\!=\!b\!+\!z~$, $~~A_{b,n}(1)\!=\!b$ for $n\!>\!1$
+
and the "initial" conditions \(~A_{b,1}(z)\!=\!b\!+\!z~\), \(~~A_{b,n}(1)\!=\!b\) for \(n\!>\!1\)
   
These conditions are not sufficient to provide the uniqueness of the ackermanns.
+
These conditions are not sufficient to provide the uniqueness of the [[ackermann]]s.<br>
 
The holomorphism with respect to the argument should be also required.
 
The holomorphism with respect to the argument should be also required.
   
$n$ is interpreted as number of the ackermann; is supposed to be [[natural number]].
+
\(n\) is interpreted as number of the [[ackermann]]; is supposed to be [[natural number]].<br>
  +
(To year 2026, the generalization for complex values of \(n\) is not yet developed.)
   
For real base $b$, the ackermann is real-holomorphic, $A_{b,n}(z^*)=A_{b,n}(z)^*$.
+
For real base \(b\), the [[ackermann]] is real-holomorphic, \(A_{b,n}(z^*)=A_{b,n}(z)^*\).
   
 
==[[C++]] generator of curves==
 
==[[C++]] generator of curves==
Files [[fsexp.cin]] and [[fslog.cin]] should be loaded in order to compile the code below.
+
/* Files [[fsexp.cin]] and [[fslog.cin]] should be loaded in order to compile the code below. */
  +
<pre>
<poem><nomathjax><nowiki>
 
 
#include <math.h>
 
#include <math.h>
 
#include <stdio.h>
 
#include <stdio.h>
Line 113: Line 126:
 
system( "open ackerplo.pdf");
 
system( "open ackerplo.pdf");
 
}
 
}
  +
</pre>
</nowiki></nomathjax></poem>
 
   
 
==[[Latex]] generator of curves==
 
==[[Latex]] generator of curves==
  +
<pre>
 
<poem><nomathjax><nowiki>
 
 
\documentclass[12pt]{article}
 
\documentclass[12pt]{article}
 
\paperwidth 604px
 
\paperwidth 604px
Line 165: Line 177:
 
\end{picture}
 
\end{picture}
 
\end{document}
 
\end{document}
  +
</pre>
</nowiki></nomathjax></poem>
 
   
 
==References==
 
==References==
  +
{{ref}}
<references/>
 
  +
 
https://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html
  +
https://mizugadro.mydns.jp/PAPERS/2009analuxpRepri.pdf
 
D.Kouznetsov. Analytic solution of F(z+1)=exp(F(z)) in complex z-plane. [[Mathematics of Computation]], 2009, v.78, p.1647-1670.
  +
  +
https://mizugadro.mydns.jp/PAPERS/2010vladie.pdf
 
D.Kouznetsov. Superexponential as special function. [[Vladikavkaz Mathematical Journal]], 2010, v.12, issue 2, p.31-45.
  +
  +
https://www.springerlink.com/content/u7327836m2850246/ <br>
  +
https://mizugadro.mydns.jp/PAPERS/2011uniabel.pdf
 
H.Trappmann, D.Kouznetsov. Uniqueness of Analytic Abel Functions in Absence of a Real Fixed Point.
  +
[[Aequationes Mathematicae]], 2011, v.81, p.65-76
   
  +
https://article.sciencepublishinggroup.com/pdf/10.11648.j.acm.20140306.14.pdf <br>
http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html
 
  +
https://mizugadro.mydns.jp/PAPERS/2014acker.pdf
http://www.ils.uec.ac.jp/~dima/PAPERS/2009analuxpRepri.pdf D.Kouznetsov. Analytic solution of F(z+1)=exp(F(z)) in complex z-plane. Mathematics of Computation, v.78 (2009), 1647-1670.
 
  +
D.Kouznetsov. Evaluation of holomorphic ackermanns. Applied and Computational Mathematics. Vol. 3, No. 6, 2014, pp. 307-314.
  +
{{fer}}
   
  +
==Keywords==
http://www.ils.uec.ac.jp/~dima/PAPERS/2010vladie.pdf D.Kouznetsov. Superexponential as special function. Vladikavkaz Mathematical Journal, 2010, v.12, issue 2, p.31-45.
 
  +
«[[Ackermann]]»,
  +
«[[Ackermann function]]»,
  +
«[[Addition]]»,
  +
«[[Multiplication]]»,
  +
«[[Exponential]]»,
  +
«[[Natural tetration]]»,
  +
«[[Natural pentation]]»,
  +
«[[Superfunction]]»,
  +
«[[Superfunctions]]»,
   
  +
«[[Суперфункции]]»,
http://www.springerlink.com/content/u7327836m2850246/ H.Trappmann, D.Kouznetsov. Uniqueness of Analytic Abel Functions in Absence of a Real Fixed Point. Aequationes Mathematicae, v.81, p.65-76 (2011)
 
   
 
[[Category:Ackermann function]]
 
[[Category:Ackermann function]]
 
[[Category:Book]]
 
[[Category:Book]]
 
[[Category:BookPlot]]
 
[[Category:C++]]
 
[[Category:C++]]
[[Category:exp]]
+
[[Category:Exponential]]
[[Category:Latex]]
 
 
[[Category:Pentation]]
 
[[Category:Pentation]]
 
[[Category:Tetration]]
 
[[Category:Tetration]]
 
[[Category:Superfunction]]
 
[[Category:Superfunction]]
  +
[[Category:Superfunctions]]

Latest revision as of 06:24, 4 January 2026


Fig.19.7 from page 266 of book «Superfunctions»[1], 2020.

This picture is used also as Рис.19.6 at page 273 of the Russian version «Суперфункции»[2], 2014.

The picture shows the Explicit plots of the 5 Ackermann functions to base \(\mathrm e\)

\(y=A_{\mathrm e,n}(x)~\) for \(n=1,2,3,4,5\)

\(A_{\mathrm e,1}(z)=\mathrm e + z\)

\(A_{\mathrm e,2}(z)=\mathrm e \,z\)

\(A_{\mathrm e,3}(z)=\mathrm e^z~\) , see exponential

\(A_{\mathrm e,4}(z)=\mathrm{tet}(z)~\) , see natural tetration

\(A_{\mathrm e,5}(z)=\mathrm{pen}(z)~\) , see natural pentation

General properties of Ackermann functions

The Ackermann function, or ackermann, to base $b$ satisfies the transfer equation

\(A_{b,n}(z\!+\!1)=A_{b,n-1}\big( A_{b,n}(z) \Big)\)

and the "initial" conditions \(~A_{b,1}(z)\!=\!b\!+\!z~\), \(~~A_{b,n}(1)\!=\!b\) for \(n\!>\!1\)

These conditions are not sufficient to provide the uniqueness of the ackermanns.
The holomorphism with respect to the argument should be also required.

\(n\) is interpreted as number of the ackermann; is supposed to be natural number.
(To year 2026, the generalization for complex values of \(n\) is not yet developed.)

For real base \(b\), the ackermann is real-holomorphic, \(A_{b,n}(z^*)=A_{b,n}(z)^*\).

C++ generator of curves

/* Files fsexp.cin and fslog.cin should be loaded in order to compile the code below. */

 #include <math.h>
 #include <stdio.h>
 #include <stdlib.h>
 #define DB double
 #define DO(x,y) for(x=0;x<y;x++)
#include <complex>
typedef std::complex<double> z_type;
 #define Re(x) x.real()
 #define Im(x) x.imag()
 #define I z_type(0.,1.)
// #include "ado.cin"
void ado(FILE *O, int X, int Y)
{ fprintf(O,"%c!PS-Adobe-2.0 EPSF-2.0\n",'%');
        fprintf(O,"%c%cBoundingBox: 0 0 %d %d\n",'%','%',X,Y);
        fprintf(O,"/M {moveto} bind def\n");
        fprintf(O,"/L {lineto} bind def\n");
        fprintf(O,"/S {stroke} bind def\n");
        fprintf(O,"/s {show newpath} bind def\n");
        fprintf(O,"/C {closepath} bind def\n");
        fprintf(O,"/F {fill} bind def\n");
        fprintf(O,"/o {.01 0 360 arc C F} bind def\n");
        fprintf(O,"/times-Roman findfont 20 scalefont setfont\n");
        fprintf(O,"/W {setlinewidth} bind def\n");
        fprintf(O,"/RGB {setrgbcolor} bind def\n");}
/* end of routine */

 #include "fsexp.cin"
 #include "fslog.cin"

z_type pen0(z_type z){ DB Lp=-1.8503545290271812; DB k,a,b; 
        k=1.86573322821; a=-.6263241; b=0.4827;
        z_type e=exp(k*z); return Lp + e*(1.+e*(a+b*e)); }

z_type pen7(z_type z){ DB x; int m,n; z=pen0(z+(2.24817451898-7.));
DO(n,7) { if(Re(z)>8.) return 999.; z=FSEXP(z); if(abs(z)<40) goto L1; return 999.; L1: ;}
return z; }

z_type pen(z_type z){ DB x; int m,n;
x=Re(z); if(x<= -4.) return pen0(z); 
m=int(x+5.);
z-=DB(m); 
z=pen0(z);
DO(n,m) z=FSEXP(z);
return z;
}

int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
FILE *o;o=fopen("ackerplo.eps","w"); ado(o,608,808);
 fprintf(o,"304 204 translate\n 100 100 scale\n");
#define M(x,y) fprintf(o,"%8.4f %8.4f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%8.4f %8.4f L\n",0.+x,0.+y);
#define o(x,y) fprintf(o,"%8.4f %8.4f o\n",0.+x,0.+y);
 for(m=-3;m<4;m++) {M(m,-2)L(m,6)}
 for(n=-2;n<9;n++) {M( -3,n)L(3,n)} fprintf(o,"2 setlinecap 1 setlinejoin .004 W 0 0 0 RGB S\n");
M(-3.02,-3.02+M_E)L(3.02,3.02+M_E) fprintf(o,".007 W .3 0 .3 RGB S\n");
M(-1., -M_E)L(3.02,3.02*M_E) fprintf(o,".007 W 0 .5 0 RGB S\n");

//DO(n,156){x=-4+.04*n;y=exp(x); if(n==0) M(x,y)else L(x,y); if(y>7.)break;} fprintf(o,".02 W 0 .8 0 RGB S\n");
fprintf(o,"1 0 0 RGB\n");
DO(n,306){x=-3.02+.02*(n-.5);y=exp(x); o(x,y); if(y>6.)break;} fprintf(o,".02 W 0 .8 0 RGB S\n");

//DO(n,150){x=-1.9+.04*n;y=Re(FSEXP(x)); if(n==0) M(x,y)else L(x,y); if(y>8.)break;} fprintf(o,".02 W 0 0 1 RGB S\n");
DO(n,202){y=-3+.05*(n-.6);x=Re(FSLOG(y));
if(n/2*2==n) M(x,y)else L(x,y); if(y>6.)break;} fprintf(o,"0 setlinecap .016 W 0 0 1 RGB S\n");

DO(n,150){x=-3.03+.04*n;y=Re(pen7(x)); if(n==0) M(x,y)else L(x,y); if(y>6.)break;} fprintf(o,".01 W 0 0 0 RGB S\n");

DB L=-1.8503545290271812;
DB K=1.86573322821;
DB a=-.6263241; 
DB b=0.4827;
M(-3,L)L(0,L)
M(0,M_E) L(1,M_E) fprintf(o,".002 W 0 0 0 RGB S\n");
//M(-4.1,-4.1+M_E) L(4.1,4.1+M_E) fprintf(o,".002 W 0 0 0 RGB S\n");
DB t2=M_PI/1.86573322821;
DB tx=-2.32;
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
printf("pen7(-1)=%18.14f\n", Re(pen7(-1.)));
printf("Pi/1.86573322821=%18.14f %18.14f\n", M_PI/1.86573322821, 2*M_PI/1.86573322821);
        system("epstopdf ackerplo.eps"); 
        system( "open ackerplo.pdf");
}

Latex generator of curves

\documentclass[12pt]{article}
\paperwidth 604px
\paperheight 806px
\textwidth 1394px
\textheight 1300px
\topmargin -104px
\oddsidemargin -92px
\usepackage{graphics}
\usepackage{rotating}
\newcommand \sx {\scalebox}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\newcommand \ing {\includegraphics}
\newcommand \rmi {\mathrm{i}}
\begin{document}
{\begin{picture}(608,806) %\put(12,0){\ing{penma}}
\put(0,0){\ing{ackerplo}}
\put(277,788){\sx{3.}{$y$}}
\put(277,695){\sx{3.}{$5$}}
\put(277,594){\sx{3.}{$4$}}
\put(277,494){\sx{3.}{$3$}}
\put(278,468){\sx{3.}{$\mathrm e$}}
\put(277,394){\sx{3.}{$2$}}
\put(277,294){\sx{3.}{$1$}}
\put(277,194){\sx{3.}{$0$}}
\put(258, 93){\sx{3.}{$-1$}}
\put( 80,174){\sx{3.}{$-2$}}
\put(180,174){\sx{3.}{$-1$}}
\put(296,174){\sx{3.}{$0$}}
\put(396,174){\sx{3.}{$1$}}
\put(496,174){\sx{3.}{$2$}}
\put(586,174){\sx{3.}{$x$}}
\put(438,714){\sx{1.8}{\rot{85}$y\!=\!\mathrm{pen}(x)$\ero}}
\put(460,716){\sx{1.8}{\rot{82}$y\!=\!\mathrm{tet}(x)$\ero}}
\put(478,712){\sx{1.8}{\rot{77}$y\!=\!\mathrm{exp}(x)$\ero}}
\put(504,712){\sx{1.8}{\rot{70}$y\!=\!\mathrm{e}x$\ero}}
%\put(478,628){\sx{1.8}{\rot{50}$y\!=\!\mathrm{e}\!+\!x$\ero}}
\put(538,718){\sx{1.96}{\rot{44}$y\!=\!\mathrm{e}\!+\!x$\ero}}
%
\put(86,222){\sx{1.9}{\rot{11}$y\!=\!\mathrm{exp}(x)$\ero}}
\put(20,30){\sx{1.9}{\rot{30}$y\!=\!\mathrm{pen}(x)$\ero}}
\put(138,22){\sx{1.9}{\rot{74}$y\!=\!\mathrm{tet}(x)$\ero}}
\put(252,22){\sx{1.9}{\rot{70}$y\!=\!\mathrm{e} x$\ero}}
%
\put(308, 13){\sx{2.2}{$y\!=\!L_{\mathrm e,4,0}$}}
\end{picture}
\end{document}

References

https://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html https://mizugadro.mydns.jp/PAPERS/2009analuxpRepri.pdf D.Kouznetsov. Analytic solution of F(z+1)=exp(F(z)) in complex z-plane. Mathematics of Computation, 2009, v.78, p.1647-1670.

https://mizugadro.mydns.jp/PAPERS/2010vladie.pdf D.Kouznetsov. Superexponential as special function. Vladikavkaz Mathematical Journal, 2010, v.12, issue 2, p.31-45.

https://www.springerlink.com/content/u7327836m2850246/
https://mizugadro.mydns.jp/PAPERS/2011uniabel.pdf H.Trappmann, D.Kouznetsov. Uniqueness of Analytic Abel Functions in Absence of a Real Fixed Point. Aequationes Mathematicae, 2011, v.81, p.65-76

https://article.sciencepublishinggroup.com/pdf/10.11648.j.acm.20140306.14.pdf
https://mizugadro.mydns.jp/PAPERS/2014acker.pdf D.Kouznetsov. Evaluation of holomorphic ackermanns. Applied and Computational Mathematics. Vol. 3, No. 6, 2014, pp. 307-314.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current06:10, 1 December 2018Thumbnail for version as of 06:10, 1 December 20183,355 × 4,477 (805 KB)Maintenance script (talk | contribs)Importing image file

The following page uses this file:

Metadata