Difference between revisions of "File:DoyaPlotT100.png"
(add more lines - as in the Book) |
|||
| (One intermediate revision by the same user not shown) | |||
| Line 1: | Line 1: | ||
| + | {{oq|DoyaPlotT100.png|}} |
||
| + | |||
[[Explicit plot]] of the [[Doya function]] |
[[Explicit plot]] of the [[Doya function]] |
||
| − | + | \( \mathrm{Doya}^n(z)=\mathrm{Tania}(n+\mathrm{ArcTania}(z))\) |
|
where the [[Tania function]] is solution of equations |
where the [[Tania function]] is solution of equations |
||
| − | + | \(\displaystyle \mathrm{Tania}'(z)= |
|
| − | \frac{ \mathrm{Tania}(z)}{1\!+\!\mathrm{Tania}(z)}~ |
+ | \frac{ \mathrm{Tania}(z)}{1\!+\!\mathrm{Tania}(z)}~\), \(~\mathrm{Tania}(0)\!=\!1\) |
At the picture, |
At the picture, |
||
| − | + | \(y=\mathrm{Doya}^n(x)\) is plotted versus \(x\) for various values of \(n\). |
|
| + | |||
| + | The picture is used as Fig.5.6 at page 52 of book «[[Superfunctions]]»<ref> |
||
| + | https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas,algorithms,tables,graphics ペーパーバック – 2020/7/28 |
||
| + | </ref><ref>https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas, algorithms, tables, graphics. Publisher: [[Lambert Academic Publishing]]. |
||
| + | </ref><br> |
||
| + | in order to show that the iterates are with the simple example |
||
| + | related to the [[Laser science]]. |
||
==Generators== |
==Generators== |
||
The curves are generated with the [[C++]] code. |
The curves are generated with the [[C++]] code. |
||
| − | The resulting file is imported into the [[Latex]] document for generation of labels. |
+ | The resulting file is imported into the [[Latex]] document for generation of labels. |
| + | The resulting *.pdf is converted to *.png for the portability. |
||
===[[C++]] generator of curves=== |
===[[C++]] generator of curves=== |
||
| + | <pre> |
||
| + | #include <math.h> |
||
| + | #include <stdio.h> |
||
| + | #include <stdlib.h> |
||
| + | #define DB double |
||
| + | #define DO(x,y) for(x=0;x<y;x++) |
||
| + | // using namespace std; |
||
| + | #include <complex> |
||
| + | typedef std::complex<double> z_type; |
||
| + | #define Re(x) x.real() |
||
| + | #define Im(x) x.imag() |
||
| + | #define I z_type(0.,1.) |
||
| + | z_type ArcTania(z_type z) {return z + log(z) - 1. ;} |
||
| + | z_type ArcTaniap(z_type z) {return 1. + 1./z ;} |
||
| + | z_type TaniaTay(z_type z) { int n; z_type s; |
||
| + | s=1.+z*(.5+z*(1./16.+z*(-1./192.+z*(-1./3072.+z*(1.3/6144.+z*(-4.7/147456. |
||
| + | //+z*(7.3/4128768.) //some reserve term |
||
| + | )))))); DO(n,3) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; } |
||
| + | z_type TaniaNega(z_type z){int n;z_type s=exp(z-exp(z)+1.); |
||
| + | DO(n,4) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; } |
||
| + | z_type TaniaBig(z_type z){int n;z_type s=z; s=z-log(s)+1.; |
||
| + | DO(n,3) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; } |
||
| + | z_type TaniaS(z_type z){int n; z_type s,t=z+z_type(2.,-M_PI);t*=2./9.; t=I*sqrt(t); |
||
| + | s=-1.+t*(3.+t*(-3.+t*(.75+t*(.3+t*(.9/16.+t*(-.3/7.+t*(-12.51/224. //+t*(-.9/28.) |
||
| + | ))))))); |
||
| + | DO(n,3) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; } |
||
| + | z_type Tania(z_type z){ z_type t; |
||
| + | if( fabs(Im(z))< M_PI && Re(z)<-2.51) return TaniaNega(z); |
||
| + | if( abs(z)>7. || Re(z)>3.8 ) return TaniaBig(z); |
||
| + | if( Im(z) > .7 ) return TaniaS(z); |
||
| + | if( Im(z) < -.7) return conj(TaniaS(conj(z))); |
||
| + | return TaniaTay(z); |
||
| + | } |
||
| + | void ado(FILE *O, int X, int Y) |
||
| + | { fprintf(O,"%c!PS-Adobe-2.0 EPSF-2.0\n",'%'); |
||
| + | fprintf(O,"%c%cBoundingBox: 0 0 %d %d\n",'%','%',X,Y); |
||
| + | fprintf(O,"/M {moveto} bind def\n"); |
||
| + | fprintf(O,"/L {lineto} bind def\n"); |
||
| + | fprintf(O,"/S {stroke} bind def\n"); |
||
| + | fprintf(O,"/s {show newpath} bind def\n"); |
||
| + | fprintf(O,"/C {closepath} bind def\n"); |
||
| + | fprintf(O,"/F {fill} bind def\n"); |
||
| + | fprintf(O,"/o {.1 0 360 arc C S} bind def\n"); |
||
| + | fprintf(O,"/times-Roman findfont 20 scalefont setfont\n"); |
||
| + | fprintf(O,"/W {setlinewidth} bind def\n"); |
||
| + | fprintf(O,"/RGB {setrgbcolor} bind def\n");} |
||
| + | #define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y); |
||
| + | #define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y); |
||
| + | int main(){ int j,k,m,n; DB x,y, a; |
||
| + | FILE *o;o=fopen("doyaplo.eps","w");ado(o,408,408); |
||
| + | fprintf(o,"4 4 translate\n 100 100 scale\n"); |
||
| + | for(m=0;m<5;m++){ M(m,0)L(m,4)} |
||
| + | for(n=0;n<5;n++){ M(0,n)L(4,n)} |
||
| + | M(0,0)L(4,4) |
||
| + | fprintf(o,".01 W 0 0 0 RGB S\n"); |
||
| + | DO(n,181){x=.005+.01*n;y=Re(Tania(6.+ArcTania(x)));if(n==0)M(x,y)else L(x,y) if(y>4.) break;} fprintf(o,".02 W 0 .3 1 RGB S\n"); |
||
| − | <!-- File [[ado.cin]] should be loaded to the working directory for the compilation of the code below: !--> |
||
| + | DO(n,181){x=.005+.01*n;y=Re(Tania(5.+ArcTania(x)));if(n==0)M(x,y)else L(x,y) if(y>4.) break;} fprintf(o,".02 W 0 .3 1 RGB S\n"); |
||
| + | DO(n,181){x=.005+.01*n;y=Re(Tania(4.+ArcTania(x)));if(n==0)M(x,y)else L(x,y) if(y>4.) break;} fprintf(o,".02 W 0 .3 1 RGB S\n"); |
||
| + | DO(n,181){x=.005+.01*n;y=Re(Tania(3.+ArcTania(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W 0 .3 1 RGB S\n"); |
||
| + | DO(n,249){x=.005+.01*n;y=Re(Tania(2.+ArcTania(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W 0 .3 1 RGB S\n"); |
||
| + | DO(n,163){x=.005+.02*n;y=Re(Tania(1.+ArcTania(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W 0 .3 1 RGB S\n"); |
||
| + | DO(n,101){x=.005+.04*n;y=Re(Tania(-1.+ArcTania(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W 1 .3 0 RGB S\n"); |
||
| + | DO(n,101){x=.005+.04*n;y=Re(Tania(-2.+ArcTania(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W 1 .3 0 RGB S\n"); |
||
| + | DO(n,101){x=.005+.04*n;y=Re(Tania(-3.+ArcTania(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W 1 .3 0 RGB S\n"); |
||
| + | DO(n,101){x=.005+.04*n;y=Re(Tania(-4.+ArcTania(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W 1 .3 0 RGB S\n"); |
||
| + | DO(n,101){x=.005+.04*n;y=Re(Tania(-5.+ArcTania(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W 1 .3 0 RGB S\n"); |
||
| + | DO(n,101){x=.005+.04*n;y=Re(Tania(-6.+ArcTania(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W 1 .3 0 RGB S\n"); |
||
| + | DO(m,61) |
||
| − | #include <math.h> |
||
| + | { a=-3.+.1*m; DO(n,400){x=.005+.01*n;y=Re(Tania(a+ArcTania(x)));if(n==0)M(x,y)else L(x,y) if(y>4.) break; } |
||
| − | #include <stdio.h> |
||
| − | #include <stdlib.h> |
||
| − | #define DB double |
||
| − | #define DO(x,y) for(x=0;x<y;x++) |
||
| − | using namespace std; |
||
| − | #include <complex> |
||
| − | typedef complex<double> z_type; |
||
| − | #define Re(x) x.real() |
||
| − | #define Im(x) x.imag() |
||
| − | #define I z_type(0.,1.) |
||
| − | |||
| − | z_type ArcTania(z_type z) {return z + log(z) - 1. ;} |
||
| − | |||
| − | z_type ArcTaniap(z_type z) {return 1. + 1./z ;} |
||
| − | |||
| − | z_type TaniaTay(z_type z) { int n; z_type s; |
||
| − | s=1.+z*(.5+z*(1./16.+z*(-1./192.+z*(-1./3072.+z*(1.3/6144.+z*(-4.7/147456. |
||
| − | //+z*(7.3/4128768.) //some reserve term |
||
| − | )))))); DO(n,3) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; } |
||
| − | |||
| − | z_type TaniaNega(z_type z){int n;z_type s=exp(z-exp(z)+1.); |
||
| − | DO(n,4) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; } |
||
| − | |||
| − | z_type TaniaBig(z_type z){int n;z_type s=z; s=z-log(s)+1.; |
||
| − | DO(n,3) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; } |
||
| − | z_type TaniaS(z_type z){int n; z_type s,t=z+z_type(2.,-M_PI);t*=2./9.; t=I*sqrt(t); |
||
| − | s=-1.+t*(3.+t*(-3.+t*(.75+t*(.3+t*(.9/16.+t*(-.3/7.+t*(-12.51/224. //+t*(-.9/28.) |
||
| − | ))))))); |
||
| − | DO(n,3) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; } |
||
| − | |||
| − | z_type Tania(z_type z){ z_type t; |
||
| − | if( fabs(Im(z))< M_PI && Re(z)<-2.51) return TaniaNega(z); |
||
| − | if( abs(z)>7. || Re(z)>3.8 ) return TaniaBig(z); |
||
| − | if( Im(z) > .7 ) return TaniaS(z); |
||
| − | if( Im(z) < -.7) return conj(TaniaS(conj(z))); |
||
| − | return TaniaTay(z); |
||
} |
} |
||
| + | fprintf(o,".005 W 0 0 0 RGB S\n"); |
||
| + | fprintf(o,"showpage\n%cTrailer",'%'); fclose(o); |
||
| − | void ado(FILE *O, int X, int Y) |
||
| − | + | system("epstopdf doyaplo.eps"); |
|
| + | system( "open doyaplo.pdf"); //these 2 commands may be specific for macintosh |
||
| − | fprintf(O,"%c%cBoundingBox: 0 0 %d %d\n",'%','%',X,Y); |
||
| + | getchar(); system("killall Preview");// if run at another operational sysetm, may need to modify |
||
| − | fprintf(O,"/M {moveto} bind def\n"); |
||
| + | } |
||
| − | fprintf(O,"/L {lineto} bind def\n"); |
||
| + | </pre> |
||
| − | fprintf(O,"/S {stroke} bind def\n"); |
||
| − | fprintf(O,"/s {show newpath} bind def\n"); |
||
| − | fprintf(O,"/C {closepath} bind def\n"); |
||
| − | fprintf(O,"/F {fill} bind def\n"); |
||
| − | fprintf(O,"/o {.1 0 360 arc C S} bind def\n"); |
||
| − | fprintf(O,"/times-Roman findfont 20 scalefont setfont\n"); |
||
| − | fprintf(O,"/W {setlinewidth} bind def\n"); |
||
| − | fprintf(O,"/RGB {setrgbcolor} bind def\n");} |
||
| − | |||
| − | #define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y); |
||
| − | #define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y); |
||
| − | |||
| − | main(){ int j,k,m,n; DB x,y, a; |
||
| − | FILE *o;o=fopen("doyaplot.eps","w");ado(o,408,408); |
||
| − | fprintf(o,"4 4 translate\n 100 100 scale\n"); |
||
| − | for(m=0;m<5;m++){ M(m,0)L(m,4)} |
||
| − | for(n=0;n<5;n++){ M(0,n)L(4,n)} |
||
| − | M(0,0)L(4,4) |
||
| − | fprintf(o,".01 W 0 0 0 RGB S\n"); |
||
| − | DO(n,181){x=.005+.01*n;y=Re(Tania(3.+ArcTania(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W 0 0 .5 RGB S\n"); |
||
| − | DO(n,249){x=.005+.01*n;y=Re(Tania(2.+ArcTania(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W 0 0 .5 RGB S\n"); |
||
| − | DO(n,163){x=.005+.02*n;y=Re(Tania(1.+ArcTania(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W 0 0 .5 RGB S\n"); |
||
| − | DO(n,101){x=.005+.04*n;y=Re(Tania(-1.+ArcTania(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W .5 0 0 RGB S\n"); |
||
| − | DO(n,101){x=.005+.04*n;y=Re(Tania(-2.+ArcTania(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W .5 0 0 RGB S\n"); |
||
| − | DO(n,101){x=.005+.04*n;y=Re(Tania(-3.+ArcTania(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W .5 0 0 RGB S\n"); |
||
| − | fprintf(o,"showpage\n%cTrailer",'%'); fclose(o); |
||
| − | system("epstopdf doyaplot.eps"); |
||
| − | system( "open doyaplot.pdf"); //these 2 commands may be specific for macintosh |
||
| − | getchar(); system("killall Preview");// if run at another operational sysetm, may need to modify |
||
| − | } |
||
===[[Latex]] generator of the picture=== |
===[[Latex]] generator of the picture=== |
||
| + | <pre> |
||
| − | <poem><nomathjax> |
||
| − | <nowiki> |
||
\documentclass[12pt]{article} |
\documentclass[12pt]{article} |
||
\usepackage{geometry} |
\usepackage{geometry} |
||
| Line 113: | Line 125: | ||
\begin{document} %<br> |
\begin{document} %<br> |
||
\sx{1}{ \begin{picture}(810,410) %<br> |
\sx{1}{ \begin{picture}(810,410) %<br> |
||
| − | \put(1,9){\ing{ |
+ | \put(1,9){\ing{doyaplo}} % <br> |
| − | \put(-12,394){\sx{2.8}{$y$}} |
+ | \put(-12,394){\sx{2.8}{$y$}} |
| − | \put(-12,303){\sx{2.8}{$3$}} |
+ | \put(-12,303){\sx{2.8}{$3$}} |
| − | \put(-12,203){\sx{2.8}{$2$}} |
+ | \put(-12,203){\sx{2.8}{$2$}} |
| − | \put(-12,103){\sx{2.8}{$1$}} |
+ | \put(-12,103){\sx{2.8}{$1$}} |
| − | \put(0,-9){\sx{2.5}{$0$}} |
+ | \put(0,-9){\sx{2.5}{$0$}} |
| − | \put(100,-9){\sx{2.5}{$1$}} |
+ | \put(100,-9){\sx{2.5}{$1$}} |
| − | \put(200,-9){\sx{2.5}{$2$}} |
+ | \put(200,-9){\sx{2.5}{$2$}} |
| − | \put(300,-9){\sx{2.5}{$3$}} |
+ | \put(300,-9){\sx{2.5}{$3$}} |
| − | \put(392,-7){\sx{2.6}{$x$}} |
+ | \put(392,-7){\sx{2.6}{$x$}} |
| − | %\put(560,214){\rot{37}\sx{4}{$y=\mathrm{Tania}(x)$}\ero} |
+ | %\put(560,214){\rot{37}\sx{4}{$y=\mathrm{Tania}(x)$}\ero} |
| − | \put( |
+ | \put(30,342){\rot{74}\sx{2.8}{$n\!=\!6$}\ero} |
| − | \put( |
+ | \put(54,342){\rot{68}\sx{2.8}{$n\!=\!5$}\ero} |
| − | \put( |
+ | \put(90,346){\rot{55}\sx{2.8}{$n\!=\!4$}\ero} |
| − | \put( |
+ | \put(146,348){\rot{53}\sx{2.8}{$n\!=\!3$}\ero} |
| − | \put( |
+ | \put(210,350){\rot{50}\sx{2.8}{$n\!=\!2$}\ero} |
| − | \put( |
+ | \put(270,340){\rot{48}\sx{2.8}{$n\!=\!1$}\ero} |
| − | \put( |
+ | \put(324,318){\rot{45}\sx{3.0}{$n\!=\!0$}\ero} |
| + | \put(332,252){\rot{43}\sx{2.8}{$n\!=\!-1$}\ero} |
||
| + | \put(332,184){\rot{40}\sx{2.8}{$n\!=\!-2$}\ero} |
||
| + | \put(332,125){\rot{36}\sx{2.8}{$n\!=\!-3$}\ero} |
||
| + | \put(328,75){\rot{30}\sx{2.8}{$n\!=\!-4$}\ero} |
||
| + | \put(320,36){\rot{22}\sx{2.8}{$n\!=\!-5$}\ero} |
||
\end{picture} %<br> |
\end{picture} %<br> |
||
| − | } |
+ | } %<br> |
\end{document} |
\end{document} |
||
| − | </ |
+ | </pre> |
| − | </nomathjax> |
||
| − | </poem> |
||
==Copyleft status== |
==Copyleft status== |
||
This picture and its generators can be used for free; attribute the source. |
This picture and its generators can be used for free; attribute the source. |
||
| + | |||
| + | ==References== |
||
| + | {{ref}} |
||
| + | |||
| + | {{fer}} |
||
| + | ==Keywords== |
||
| + | «[[]]», |
||
| + | <b>«[[]]»</b>, |
||
| + | <b>«[[Doya function]]»</b>, |
||
| + | «[[Iterate]]», |
||
| + | «[[Superfunction]]», |
||
| + | «[[Superfunctions]]», |
||
| + | <b>«[[Tania function]]»</b>, |
||
| + | «[[Transfer function]]», |
||
| + | |||
| + | «[[Суперфункции]]», |
||
[[Category:Book]] |
[[Category:Book]] |
||
| Line 147: | Line 178: | ||
[[Category:Doya function]] |
[[Category:Doya function]] |
||
[[Category:Laser science]] |
[[Category:Laser science]] |
||
| + | [[Category:Superfunctins]] |
||
[[Category:Transfer function]] |
[[Category:Transfer function]] |
||
Latest revision as of 18:20, 18 August 2025
Explicit plot of the Doya function
\( \mathrm{Doya}^n(z)=\mathrm{Tania}(n+\mathrm{ArcTania}(z))\)
where the Tania function is solution of equations
\(\displaystyle \mathrm{Tania}'(z)= \frac{ \mathrm{Tania}(z)}{1\!+\!\mathrm{Tania}(z)}~\), \(~\mathrm{Tania}(0)\!=\!1\)
At the picture, \(y=\mathrm{Doya}^n(x)\) is plotted versus \(x\) for various values of \(n\).
The picture is used as Fig.5.6 at page 52 of book «Superfunctions»[1][2]
in order to show that the iterates are with the simple example
related to the Laser science.
Generators
The curves are generated with the C++ code. The resulting file is imported into the Latex document for generation of labels. The resulting *.pdf is converted to *.png for the portability.
C++ generator of curves
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
// using namespace std;
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
z_type ArcTania(z_type z) {return z + log(z) - 1. ;}
z_type ArcTaniap(z_type z) {return 1. + 1./z ;}
z_type TaniaTay(z_type z) { int n; z_type s;
s=1.+z*(.5+z*(1./16.+z*(-1./192.+z*(-1./3072.+z*(1.3/6144.+z*(-4.7/147456.
//+z*(7.3/4128768.) //some reserve term
)))))); DO(n,3) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; }
z_type TaniaNega(z_type z){int n;z_type s=exp(z-exp(z)+1.);
DO(n,4) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; }
z_type TaniaBig(z_type z){int n;z_type s=z; s=z-log(s)+1.;
DO(n,3) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; }
z_type TaniaS(z_type z){int n; z_type s,t=z+z_type(2.,-M_PI);t*=2./9.; t=I*sqrt(t);
s=-1.+t*(3.+t*(-3.+t*(.75+t*(.3+t*(.9/16.+t*(-.3/7.+t*(-12.51/224. //+t*(-.9/28.)
)))))));
DO(n,3) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; }
z_type Tania(z_type z){ z_type t;
if( fabs(Im(z))< M_PI && Re(z)<-2.51) return TaniaNega(z);
if( abs(z)>7. || Re(z)>3.8 ) return TaniaBig(z);
if( Im(z) > .7 ) return TaniaS(z);
if( Im(z) < -.7) return conj(TaniaS(conj(z)));
return TaniaTay(z);
}
void ado(FILE *O, int X, int Y)
{ fprintf(O,"%c!PS-Adobe-2.0 EPSF-2.0\n",'%');
fprintf(O,"%c%cBoundingBox: 0 0 %d %d\n",'%','%',X,Y);
fprintf(O,"/M {moveto} bind def\n");
fprintf(O,"/L {lineto} bind def\n");
fprintf(O,"/S {stroke} bind def\n");
fprintf(O,"/s {show newpath} bind def\n");
fprintf(O,"/C {closepath} bind def\n");
fprintf(O,"/F {fill} bind def\n");
fprintf(O,"/o {.1 0 360 arc C S} bind def\n");
fprintf(O,"/times-Roman findfont 20 scalefont setfont\n");
fprintf(O,"/W {setlinewidth} bind def\n");
fprintf(O,"/RGB {setrgbcolor} bind def\n");}
#define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y);
int main(){ int j,k,m,n; DB x,y, a;
FILE *o;o=fopen("doyaplo.eps","w");ado(o,408,408);
fprintf(o,"4 4 translate\n 100 100 scale\n");
for(m=0;m<5;m++){ M(m,0)L(m,4)}
for(n=0;n<5;n++){ M(0,n)L(4,n)}
M(0,0)L(4,4)
fprintf(o,".01 W 0 0 0 RGB S\n");
DO(n,181){x=.005+.01*n;y=Re(Tania(6.+ArcTania(x)));if(n==0)M(x,y)else L(x,y) if(y>4.) break;} fprintf(o,".02 W 0 .3 1 RGB S\n");
DO(n,181){x=.005+.01*n;y=Re(Tania(5.+ArcTania(x)));if(n==0)M(x,y)else L(x,y) if(y>4.) break;} fprintf(o,".02 W 0 .3 1 RGB S\n");
DO(n,181){x=.005+.01*n;y=Re(Tania(4.+ArcTania(x)));if(n==0)M(x,y)else L(x,y) if(y>4.) break;} fprintf(o,".02 W 0 .3 1 RGB S\n");
DO(n,181){x=.005+.01*n;y=Re(Tania(3.+ArcTania(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W 0 .3 1 RGB S\n");
DO(n,249){x=.005+.01*n;y=Re(Tania(2.+ArcTania(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W 0 .3 1 RGB S\n");
DO(n,163){x=.005+.02*n;y=Re(Tania(1.+ArcTania(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W 0 .3 1 RGB S\n");
DO(n,101){x=.005+.04*n;y=Re(Tania(-1.+ArcTania(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W 1 .3 0 RGB S\n");
DO(n,101){x=.005+.04*n;y=Re(Tania(-2.+ArcTania(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W 1 .3 0 RGB S\n");
DO(n,101){x=.005+.04*n;y=Re(Tania(-3.+ArcTania(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W 1 .3 0 RGB S\n");
DO(n,101){x=.005+.04*n;y=Re(Tania(-4.+ArcTania(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W 1 .3 0 RGB S\n");
DO(n,101){x=.005+.04*n;y=Re(Tania(-5.+ArcTania(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W 1 .3 0 RGB S\n");
DO(n,101){x=.005+.04*n;y=Re(Tania(-6.+ArcTania(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W 1 .3 0 RGB S\n");
DO(m,61)
{ a=-3.+.1*m; DO(n,400){x=.005+.01*n;y=Re(Tania(a+ArcTania(x)));if(n==0)M(x,y)else L(x,y) if(y>4.) break; }
}
fprintf(o,".005 W 0 0 0 RGB S\n");
fprintf(o,"showpage\n%cTrailer",'%'); fclose(o);
system("epstopdf doyaplo.eps");
system( "open doyaplo.pdf"); //these 2 commands may be specific for macintosh
getchar(); system("killall Preview");// if run at another operational sysetm, may need to modify
}
Latex generator of the picture
\documentclass[12pt]{article}
\usepackage{geometry}
\usepackage{graphicx}
\usepackage{rotating} %<br>
\paperwidth 419pt %<br>
\paperheight 426pt %<br>
\topmargin -103pt %<br>
\oddsidemargin -83pt %<br>
\textwidth 1200pt %<br>
\textheight 600pt %<br>
\pagestyle {empty} %<br>
\newcommand \sx {\scalebox} %<br>
\newcommand \rot {\begin{rotate}} %<br>
\newcommand \ero {\end{rotate}} %<br>
\newcommand \ing {\includegraphics} %<br>
\begin{document} %<br>
\sx{1}{ \begin{picture}(810,410) %<br>
\put(1,9){\ing{doyaplo}} % <br>
\put(-12,394){\sx{2.8}{$y$}}
\put(-12,303){\sx{2.8}{$3$}}
\put(-12,203){\sx{2.8}{$2$}}
\put(-12,103){\sx{2.8}{$1$}}
\put(0,-9){\sx{2.5}{$0$}}
\put(100,-9){\sx{2.5}{$1$}}
\put(200,-9){\sx{2.5}{$2$}}
\put(300,-9){\sx{2.5}{$3$}}
\put(392,-7){\sx{2.6}{$x$}}
%\put(560,214){\rot{37}\sx{4}{$y=\mathrm{Tania}(x)$}\ero}
\put(30,342){\rot{74}\sx{2.8}{$n\!=\!6$}\ero}
\put(54,342){\rot{68}\sx{2.8}{$n\!=\!5$}\ero}
\put(90,346){\rot{55}\sx{2.8}{$n\!=\!4$}\ero}
\put(146,348){\rot{53}\sx{2.8}{$n\!=\!3$}\ero}
\put(210,350){\rot{50}\sx{2.8}{$n\!=\!2$}\ero}
\put(270,340){\rot{48}\sx{2.8}{$n\!=\!1$}\ero}
\put(324,318){\rot{45}\sx{3.0}{$n\!=\!0$}\ero}
\put(332,252){\rot{43}\sx{2.8}{$n\!=\!-1$}\ero}
\put(332,184){\rot{40}\sx{2.8}{$n\!=\!-2$}\ero}
\put(332,125){\rot{36}\sx{2.8}{$n\!=\!-3$}\ero}
\put(328,75){\rot{30}\sx{2.8}{$n\!=\!-4$}\ero}
\put(320,36){\rot{22}\sx{2.8}{$n\!=\!-5$}\ero}
\end{picture} %<br>
} %<br>
\end{document}
Copyleft status
This picture and its generators can be used for free; attribute the source.
References
- ↑ https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas,algorithms,tables,graphics ペーパーバック – 2020/7/28
- ↑ https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas, algorithms, tables, graphics. Publisher: Lambert Academic Publishing.
Keywords
«[[]]», «[[]]», «Doya function», «Iterate», «Superfunction», «Superfunctions», «Tania function», «Transfer function»,
«Суперфункции»,
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 18:18, 18 August 2025 | 834 × 848 (338 KB) | T (talk | contribs) | add more lines - as in the Book | |
| 17:50, 20 June 2013 | 580 × 590 (77 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following 2 pages use this file: