Difference between revisions of "File:Fracit10t150.jpg"
(book) |
($ -> \( ; ref) |
||
| (One intermediate revision by one other user not shown) | |||
| Line 1: | Line 1: | ||
| + | {{oq|Fracit10t150.jpg|Original file (1,466 × 1,466 pixels, file size: 564 KB, MIME type: image/jpeg)}} |
||
| + | |||
[[Iterate of linear fraction]]; |
[[Iterate of linear fraction]]; |
||
| − | + | \(\displaystyle f(z)=\frac{x}{c+z}\) at \(c\!=\!1\). |
|
| − | In general the |
+ | In general the \(n\)th iterate of \(f\) can be expressed as follows: |
| − | + | \(\displaystyle |
|
| − | f^n(z)=\frac{z}{c^n+\frac{1-c^n}{1-c} z} |
+ | f^n(z)=\frac{z}{c^n+\frac{1-c^n}{1-c} z}\) |
| − | + | \(y=f^n(x)\) is plotted versus \(x\) for various values of \(n\). |
|
| − | For |
+ | For \(c=1\), the limit should be considered. |
| + | |||
| + | ==[[Superfunctions]]== |
||
| + | |||
| + | This explicit plot is used as Fig.4.7 at page 39 of book «[[Superfunctions]]» |
||
| + | <ref> |
||
| + | https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas,algorithms,tables,graphics ペーパーバック – 2020/7/28 |
||
| + | </ref><ref>https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas, algorithms, tables, graphics. Publisher: [[Lambert Academic Publishing]]. |
||
| + | </ref> |
||
| + | <br> |
||
| + | in order to practice with [[iterate]]s of [[linear fraction]]s. |
||
==Generator of curves== |
==Generator of curves== |
||
// File [[ado.cin]] should be loaded to the working directory in order to compile the [[C++]] code below. |
// File [[ado.cin]] should be loaded to the working directory in order to compile the [[C++]] code below. |
||
| + | // <pre> |
||
| − | |||
| − | // <poem><nomathjax><nowiki> |
||
#include<math.h> |
#include<math.h> |
||
#include<stdio.h> |
#include<stdio.h> |
||
| Line 57: | Line 68: | ||
system( "open fracit10.pdf"); |
system( "open fracit10.pdf"); |
||
} |
} |
||
| + | //</pre> |
||
| − | //</nowiki></nomathjax></poem> |
||
==Latex generator of labels== |
==Latex generator of labels== |
||
%File [[Fracit20t.pdf]] should be generated with the code above in order to compile the [[Latex]] document below. |
%File [[Fracit20t.pdf]] should be generated with the code above in order to compile the [[Latex]] document below. |
||
| + | % <pre> |
||
| − | |||
| − | % <poem><nomathjax><nowiki> |
||
\documentclass[12pt]{article} |
\documentclass[12pt]{article} |
||
\paperwidth 706pt |
\paperwidth 706pt |
||
| Line 126: | Line 136: | ||
\end{picture} |
\end{picture} |
||
\end{document} |
\end{document} |
||
| + | % </pre> |
||
| − | % </nowiki></nomathjax></poem> |
||
==References== |
==References== |
||
| + | {{ref}} |
||
| − | <references/> |
||
| + | |||
| + | {{fer}} |
||
| + | ==Keywords== |
||
| + | «[[Explicit plot]]», |
||
| + | «[[Superfunctions]]», |
||
| + | «[[Суперфункции]]», |
||
[[Category:Book]] |
[[Category:Book]] |
||
| + | [[Category:BookPlot]] |
||
[[Category:C++]] |
[[Category:C++]] |
||
[[Category:Elementary function]] |
[[Category:Elementary function]] |
||
Latest revision as of 21:53, 16 August 2025
\(\displaystyle f(z)=\frac{x}{c+z}\) at \(c\!=\!1\).
In general the \(n\)th iterate of \(f\) can be expressed as follows:
\(\displaystyle f^n(z)=\frac{z}{c^n+\frac{1-c^n}{1-c} z}\)
\(y=f^n(x)\) is plotted versus \(x\) for various values of \(n\).
For \(c=1\), the limit should be considered.
Superfunctions
This explicit plot is used as Fig.4.7 at page 39 of book «Superfunctions»
[1][2]
in order to practice with iterates of linear fractions.
Generator of curves
// File ado.cin should be loaded to the working directory in order to compile the C++ code below.
//#include<math.h>
#include<stdio.h>
#include<stdlib.h>
#define DO(x,y) for(x=0;x<y;x++)
#define DB double
#include"ado.cin"
DB c=1.;
//DB F(DB n,DB x){ DB cn=pow(c,n); DB r=(1.-cn)/(1.-c); return x/( cn + r*x); }
DB F(DB n,DB x){ if(c==1.) return x/(1.+n*x); DB cn=pow(c,n); DB r=(1.-cn)/(1.-c); return x/( cn + r*x); }
main(){ FILE *o; int m,n,k; DB x,y,t;
o=fopen("fracit10.eps","w");
ado(o,702,702);
#define M(x,y) fprintf(o,"%7.4f %7.4f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%7.4f %7.4f L\n",0.+x,0.+y);
fprintf(o,"101 101 translate 100 100 scale 2 setlinecap\n");
for(n=-1;n<7;n++) { M(-1,n)L(6,n)}
for(m=-1;m<7;m++) { M(m,-1)L(m,6)}
fprintf(o,".01 W S\n");
n=0;DO(m,3501){x=-1.+.002*(m-.5);y=F(-4.,x);if(y>-10.4&&y<10.4){ if(n==0){M(x,y) n=1;}else L(x,y)} else n=0;} fprintf(o,".03 W 1 0 1 RGB S\n");
n=0;DO(m,3501){x=-1.+.002*(m-.5);y=F(-3.,x);if(y>-8.4&&y<8.4){ if(n==0){M(x,y) n=1;}else L(x,y)} else n=0;} fprintf(o,".03 W 1 0 1 RGB S\n");
n=0;DO(m,3501){x=-1.+.002*(m-.5);y=F(-2.,x);if(y>-7.4&&y<7.4){ if(n==0){M(x,y) n=1;}else L(x,y)} else n=0;} fprintf(o,".03 W 1 0 1 RGB S\n");
n=0;DO(m,3501){x=-1.+.002*(m-.5);y=F(-1.,x);if(y>-7.4&&y<7.4){ if(n==0){M(x,y) n=1;}else L(x,y)} else n=0;} fprintf(o,".03 W 1 0 1 RGB S\n");
n=0;DO(m,3501){x=-1.+.002*(m-.5);y=F( 1.,x);if(y>-7.4&&y<7.4){ if(n==0){M(x,y) n=1;}else L(x,y)} else n=0;} fprintf(o,".03 W 0 1 0 RGB S\n");
n=0;DO(m,3501){x=-1.+.002*(m-.5);y=F( 2.,x);if(y>-7.4&&y<7.4){ if(n==0){M(x,y) n=1;}else L(x,y)} else n=0;} fprintf(o,".03 W 0 1 0 RGB S\n");
n=0;DO(m,3501){x=-1.+.002*(m-.5);y=F( 3.,x);if(y>-8.4&&y<8.4){ if(n==0){M(x,y) n=1;}else L(x,y)} else n=0;} fprintf(o,".03 W 0 1 0 RGB S\n");
n=0;DO(m,3501){x=-1.+.002*(m-.5);y=F( 4.,x);if(y>-10.4&&y<10.4){if(n==0){M(x,y)n=1;}else L(x,y)} else n=0;} fprintf(o,".03 W 0 1 0 RGB S\n");
DO(k,41){ t=-2.+.1*k;
n=0;DO(m,3501){x=-1.+.002*(m-.5);y=F(t,x);if(y>-7.2&&y<7.2){ if(n==0){M(x,y) n=1;}else L(x,y)} else n=0;} fprintf(o,".01 W 0 0 0 RGB S\n");
}
fprintf(o,"showpage\n"); fprintf(o,"%c%cTrailer\n",'%','%');
fclose(o);
system("epstopdf fracit10.eps");
system( "open fracit10.pdf");
}
//
Latex generator of labels
%File Fracit20t.pdf should be generated with the code above in order to compile the Latex document below.
%\documentclass[12pt]{article}
\paperwidth 706pt
\paperheight 706pt
\textwidth 800pt
\textheight 800pt
\topmargin -108pt
\oddsidemargin -72pt
\parindent 0pt
\pagestyle{empty}
\usepackage {graphics}
\usepackage{rotating}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\newcommand \ing {\includegraphics}
\newcommand \sx {\scalebox}
\begin{document}%H0H1H2HHHHHHHHHHHHHH
\begin{picture}(704,704)
\put(79,684){\sx{3}{$y$}}
\put(79,592){\sx{3}{$5$}}
\put(79,492){\sx{3}{$4$}}
\put(79,392){\sx{3}{$3$}}
\put(79,292){\sx{3}{$2$}}
\put(79,192){\sx{3}{$1$}}
\put(79,92){\sx{3}{$0$}}
\put(94,74){\sx{3}{$0$}}
\put(194,74){\sx{3}{$1$}}
\put(294,74){\sx{3}{$2$}}
\put(394,74){\sx{3}{$3$}}
\put(494,74){\sx{3}{$4$}}
\put(594,74){\sx{3}{$5$}}
\put(686,75){\sx{3}{$x$}}
%\put(0,0){\ing{fracit05}}
%\put(0,0){\ing{fracit10}}
\put(0,0){\ing{fracit10}}
\put(20,200){\rot{70}\sx{3.2}{$n\!=\!2$}\ero}
\put(40,154){\rot{69}\sx{3.2}{$n\!=\!3$}\ero}
\put(6,122){\rot{22}\sx{3.2}{$n\!=\!4$}\ero}
\put(128, 0){\rot{49}\sx{2.9}{$n\!=\!-4$}\ero}
\put(203, 43){\rot{4}\sx{2.9}{$n\!=\!-3$}\ero}
\put(207,6){\rot{11}\sx{2.9}{$n\!=\!-2$}\ero}
%\put(139,560){\rot{89}\sx{3.2}{$n\!=\!-2$}\ero}
\put(194,560){\rot{87}\sx{3.2}{$n\!=\!-1$}\ero}
\put(252,558){\rot{85}\sx{3}{$n\!=\!-0.5$}\ero}
\put(274,558){\rot{83}\sx{3}{$n\!=\!-0.4$}\ero}
\put(304,558){\rot{79}\sx{3}{$n\!=\!-0.3$}\ero}
\put(352,558){\rot{76}\sx{3}{$n\!=\!-0.2$}\ero}
\put(424,558){\rot{64}\sx{3}{$n\!=\!-0.1$}\ero}
\put(580,567){\rot{45}\sx{3}{$n\!=\!0$}\ero}
\put(610,429){\rot{23}\sx{3}{$n\!=\!0.1$}\ero}
\put(608,343){\rot{14}\sx{3}{$n\!=\!0.2$}\ero}
\put(607,294){\rot{8}\sx{3}{$n\!=\!0.3$}\ero}
\put(606,260){\rot{6}\sx{3}{$n\!=\!0.4$}\ero}
\put(605,236){\rot{4}\sx{3}{$n\!=\!0.5$}\ero}
\put(620,178){\sx{3.2}{$n\!=\!1$}}
\put(620,139){\sx{3.2}{$n\!=\!2$}}
\end{picture}
\end{document}
%
References
- ↑ https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas,algorithms,tables,graphics ペーパーバック – 2020/7/28
- ↑ https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas, algorithms, tables, graphics. Publisher: Lambert Academic Publishing.
Keywords
«Explicit plot», «Superfunctions», «Суперфункции»,
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 21:18, 4 August 2013 | 1,466 × 1,466 (564 KB) | T (talk | contribs) | Iterate of linear fraction; $\displaystyle f(z)=\frac{x}{c+z}$ at $c\!=\!2$. In general the $n$th iterate of $f$ can be expressed as follows: $\displaystyle f^n(z)=\frac{z}{c^n+\frac{1-c^n}{1-c} z}$ $y=f^n(x)$ is plotted versus $x$ for various... |
You cannot overwrite this file.
File usage
The following page uses this file: