Difference between revisions of "File:SquareRootOfFactorial.png"

From TORI
Jump to navigation Jump to search
(add description, refs, keywords)
Line 1: Line 1:
  +
{{oq|Sufact.png|Original file ‎(1,677 × 2,191 pixels, file size: 224 KB, MIME type: image/png) }}
Graphical representation of the [[Square root of factorial]]: functions<br>
 
$y\!=\! \mathrm{factorial}(x)=x!$, thin black line, and<br>
 
$y\!=\!\mathrm{factorial}^{1/2}(x)\!=\!\sqrt{\mathrm{factorial}}(x)
 
\!=\!\sqrt{!\,}(x)$, thick red line, versus $x$.
 
   
  +
[[Explicit plot]] of functions [[Factorial]] and [[SuFac]]:
For $x\!>\!1$ the relation below holds:
 
<!--$\sqrt{\mathrm{factorial}}\!\Big( \sqrt{\mathrm{factorial}}(x) \Big)$.!-->
 
: $\sqrt{!\,}\!\Big( \sqrt{!\,}(x) \Big)=x!$
 
   
  +
\(y\!=\!x! ~\) and \(~y\!=\!\mathrm{SuFac}(x) ~\) versus \(x\).
   
  +
This is adaptation of Figure 8.4 from the Russian book [[Superfunctions]] ([[Суперфункции]], in Russian)
Copyleft 2011 by Dmitrii Kouznetsov.
 
  +
<ref>
  +
http://mizugadro.mydns.jp/BOOK/202.pdf
  +
Д.Кузнецов. Суперфункции. [[Lambert Academic Publishing]], 2014.
  +
</ref>.
   
[[Category:Superfunctions]]
+
This plot is used also as Fig.8.5 at page 95 of book «[[Superfunctions]]»<ref>
  +
https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas,algorithms,tables,graphics - 2020/7/28
  +
</ref><ref>https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas, algorithms, tables, graphics. Publisher: [[Lambert Academic Publishing]].
  +
</ref>
  +
<br>
  +
in order to compare these functions, [[SuFac]] and [[Factorial]].
  +
  +
==[[C++]] generator of curves==
  +
Files [[ado.cin]], [[fac.cin]], [[superfac.cin]] should be loaded in order to compile the code below
  +
  +
<pre>
  +
#include<math.h>
  +
#include<stdio.h>
  +
#include<stdlib.h>
  +
#define DB double
  +
#define DO(x,y) for(x=0;x<y;x++)
  +
//using namespace std;
  +
#include <complex>
  +
typedef std::complex<double> z_type;
  +
#define Re(x) x.real()
  +
#define Im(x) x.imag()
  +
#define I z_type(0.,1.)
  +
#include "ado.cin"
  +
#include "fac.cin"
  +
#include "sufac.cin"
  +
// #include "superfactorial.cin"
  +
//#include "doya.cin"
  +
//DB Shoko(DB x) { return log(1.+exp(x)*(M_E-1.)); }
  +
  +
int main(){ int m,n; double x,y; FILE *o;
  +
//o=fopen("SuperFacPlot.eps","w"); ado(o,802,1010);
  +
o=fopen("superfacplo.eps","w"); ado(o,802,1010);
  +
fprintf(o,"401 1 translate 100 100 scale\n");
  +
#define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y);
  +
#define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y);
  +
for(m=-4;m<5;m++) {M(m,0)L(m,10)}
  +
for(m=0;m<11;m++) {M(-4,m)L(4,m)}
  +
fprintf(o,"2 setlinecap .01 W S\n 1 setlinecap 1 setlinejoin\n");
  +
for(m=0;m<42;m++){x=-.5+.1*m; y=Re(fac(x)); if(m==0)M(x,y) else L(x,y);} fprintf(o,".04 W .7 0 0 RGB S\n");
  +
for(m=0;m<54;m++){x=-4+.1*m; y=Re(superfac(x));if(m==0)M(x,y) else L(x,y);} fprintf(o,".04 W 0 0 .7 RGB S\n");
  +
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
  +
system("epstopdf superfacplo.eps");
  +
system( "open superfacplo.pdf");
  +
getchar(); system("killall Preview");//for mac
  +
}
  +
</pre>
  +
  +
==[[Latex]] generator of labels==
  +
  +
<pre>
  +
\documentclass[12pt]{article}
  +
\paperwidth 808pt
  +
\paperheight 1056pt
  +
\textwidth 1800pt
  +
\textheight 1800pt
  +
\topmargin -108pt
  +
\oddsidemargin -72pt
  +
\parindent 0pt
  +
\pagestyle{empty}
  +
\usepackage {graphics}
  +
\usepackage{rotating}
  +
\newcommand \rot {\begin{rotate}}
  +
\newcommand \ero {\end{rotate}}
  +
\newcommand \ing {\includegraphics}
  +
\newcommand \sx {\scalebox}
  +
\begin{document}
  +
\begin{picture}(602,1010)
  +
%\put(0,0){\includegraphics{SuperFacPlot}}
  +
\put(0,0){\includegraphics{superfacplo}}
  +
\put(372,978){\sx{4.5}{$y$}}
  +
\put(372,890){\sx{4.5}{$9$}}
  +
\put(372,790){\sx{4.5}{$8$}}
  +
\put(372,690){\sx{4.5}{$7$}}
  +
\put(372,590){\sx{4.5}{$6$}}
  +
\put(372,490){\sx{4.5}{$5$}}
  +
\put(372,390){\sx{4.5}{$4$}}
  +
\put(372,290){\sx{4.5}{$3$}}
  +
\put(372,190){\sx{4.5}{$2$}}
  +
\put(372,90){\sx{4.5}{$1$}}
  +
\put( 066,-42){\sx{4.5}{$-\!3$}}
  +
\put(166,-42){\sx{4.5}{$-\!2$}}
  +
\put(266,-42){\sx{4.5}{$-\!1$}}
  +
\put(391,-42){\sx{4.5}{$0$}}
  +
\put(491,-42){\sx{4.5}{$1$}}
  +
\put(591,-42){\sx{4.5}{$2$}}
  +
\put(691,-42){\sx{4.5}{$3$}}
  +
\put(777,-42){\sx{4.5}{$x$}}
  +
%\put(532,440){\sx{5}{\rot{83}$y\!=\!\mathrm{SuperFactorial}(x)$\ero}}
  +
\put(532,440){\sx{5}{\rot{83}$y\!=\!\mathrm{SuFac}(x)$\ero}}
  +
%\put(660,450){\sx{4}{\rot{83}$y\!=\!\mathrm{Factorial}(x)$\ero}} %
  +
\put(740,500){\sx{5}{\rot{83}$y\!=\!\mathrm{Factorial}(x)$\ero}}
  +
\end{picture}
  +
\end{document}
  +
</pre>
  +
  +
==References==
  +
{{ref}}
  +
  +
{{fer}}
  +
==Keywords==
  +
«[[]]»,
  +
«[[Factorial]]»,
  +
«[[Regular iteration]]»,
  +
«[[SuFac]]»,
  +
«[[SuperFactorial]]»,
  +
«[[Superfactorial]]»,
  +
«[[Superfunction]]»,
  +
«[[Superfunctions]]»,
  +
«[[Table of superfunctions]]»,
  +
«[[Transfer equation]]»,
  +
«[[Transfer function]]»,
  +
  +
[[Category:Book]]
  +
[[Category:BookPlot]]
  +
[[Category:C++]]
  +
[[Category:Explicit plot]]
 
[[Category:Factorial]]
 
[[Category:Factorial]]
[[Category:Explicit plots]]
+
[[Category:Latex]]
  +
[[Category:SuFac]]
  +
[[Category:Superfunction]]
  +
[[Category:Superfunctions]]
  +
[[Category:Transfer function]]

Revision as of 15:19, 22 August 2025


Explicit plot of functions Factorial and SuFac:

\(y\!=\!x! ~\) and \(~y\!=\!\mathrm{SuFac}(x) ~\) versus \(x\).

This is adaptation of Figure 8.4 from the Russian book Superfunctions (Суперфункции, in Russian) [1].

This plot is used also as Fig.8.5 at page 95 of book «Superfunctions»[2][3]
in order to compare these functions, SuFac and Factorial.

C++ generator of curves

Files ado.cin, fac.cin, superfac.cin should be loaded in order to compile the code below

#include<math.h>
#include<stdio.h>
#include<stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
//using namespace std;
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "ado.cin"
#include "fac.cin"
#include "sufac.cin"
// #include "superfactorial.cin"
 //#include "doya.cin"
 //DB Shoko(DB x) { return log(1.+exp(x)*(M_E-1.)); }

int main(){ int m,n; double x,y; FILE *o;
//o=fopen("SuperFacPlot.eps","w"); ado(o,802,1010);
o=fopen("superfacplo.eps","w"); ado(o,802,1010);
fprintf(o,"401 1 translate 100 100 scale\n");
#define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y);
for(m=-4;m<5;m++) {M(m,0)L(m,10)}
for(m=0;m<11;m++) {M(-4,m)L(4,m)}
fprintf(o,"2 setlinecap .01 W S\n 1 setlinecap 1 setlinejoin\n");
for(m=0;m<42;m++){x=-.5+.1*m; y=Re(fac(x));    if(m==0)M(x,y) else L(x,y);} fprintf(o,".04 W .7 0 0 RGB S\n");
for(m=0;m<54;m++){x=-4+.1*m; y=Re(superfac(x));if(m==0)M(x,y) else L(x,y);} fprintf(o,".04 W 0 0 .7 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
    system("epstopdf superfacplo.eps");
    system(    "open superfacplo.pdf");            
    getchar(); system("killall Preview");//for mac
}

Latex generator of labels

\documentclass[12pt]{article}
\paperwidth 808pt
\paperheight 1056pt
\textwidth 1800pt
\textheight 1800pt
\topmargin -108pt
\oddsidemargin -72pt 
\parindent 0pt
\pagestyle{empty}
\usepackage {graphics}
\usepackage{rotating}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\newcommand \ing {\includegraphics}
\newcommand \sx {\scalebox}
\begin{document}
\begin{picture}(602,1010)
%\put(0,0){\includegraphics{SuperFacPlot}}
\put(0,0){\includegraphics{superfacplo}}
\put(372,978){\sx{4.5}{$y$}}
\put(372,890){\sx{4.5}{$9$}}
\put(372,790){\sx{4.5}{$8$}}
\put(372,690){\sx{4.5}{$7$}}
\put(372,590){\sx{4.5}{$6$}}
\put(372,490){\sx{4.5}{$5$}}
\put(372,390){\sx{4.5}{$4$}}
\put(372,290){\sx{4.5}{$3$}}
\put(372,190){\sx{4.5}{$2$}}
\put(372,90){\sx{4.5}{$1$}}
\put( 066,-42){\sx{4.5}{$-\!3$}}
\put(166,-42){\sx{4.5}{$-\!2$}}
\put(266,-42){\sx{4.5}{$-\!1$}}
\put(391,-42){\sx{4.5}{$0$}}
\put(491,-42){\sx{4.5}{$1$}}
\put(591,-42){\sx{4.5}{$2$}}
\put(691,-42){\sx{4.5}{$3$}}
\put(777,-42){\sx{4.5}{$x$}}
%\put(532,440){\sx{5}{\rot{83}$y\!=\!\mathrm{SuperFactorial}(x)$\ero}}
\put(532,440){\sx{5}{\rot{83}$y\!=\!\mathrm{SuFac}(x)$\ero}}
%\put(660,450){\sx{4}{\rot{83}$y\!=\!\mathrm{Factorial}(x)$\ero}} %
\put(740,500){\sx{5}{\rot{83}$y\!=\!\mathrm{Factorial}(x)$\ero}}
\end{picture}
\end{document}

References

  1. http://mizugadro.mydns.jp/BOOK/202.pdf Д.Кузнецов. Суперфункции. Lambert Academic Publishing, 2014.
  2. https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas,algorithms,tables,graphics - 2020/7/28
  3. https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas, algorithms, tables, graphics. Publisher: Lambert Academic Publishing.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current17:50, 20 June 2013Thumbnail for version as of 17:50, 20 June 2013538 × 1,050 (34 KB)Maintenance script (talk | contribs)Importing image file