Difference between revisions of "File:SquareRootOfFactorial.png"
(add description, refs, keywords) |
|||
| Line 1: | Line 1: | ||
| + | {{oq|Sufact.png|Original file (1,677 × 2,191 pixels, file size: 224 KB, MIME type: image/png) }} |
||
| − | Graphical representation of the [[Square root of factorial]]: functions<br> |
||
| − | $y\!=\! \mathrm{factorial}(x)=x!$, thin black line, and<br> |
||
| − | $y\!=\!\mathrm{factorial}^{1/2}(x)\!=\!\sqrt{\mathrm{factorial}}(x) |
||
| − | \!=\!\sqrt{!\,}(x)$, thick red line, versus $x$. |
||
| + | [[Explicit plot]] of functions [[Factorial]] and [[SuFac]]: |
||
| − | For $x\!>\!1$ the relation below holds: |
||
| − | <!--$\sqrt{\mathrm{factorial}}\!\Big( \sqrt{\mathrm{factorial}}(x) \Big)$.!--> |
||
| − | : $\sqrt{!\,}\!\Big( \sqrt{!\,}(x) \Big)=x!$ |
||
| + | \(y\!=\!x! ~\) and \(~y\!=\!\mathrm{SuFac}(x) ~\) versus \(x\). |
||
| + | This is adaptation of Figure 8.4 from the Russian book [[Superfunctions]] ([[Суперфункции]], in Russian) |
||
| − | Copyleft 2011 by Dmitrii Kouznetsov. |
||
| + | <ref> |
||
| + | http://mizugadro.mydns.jp/BOOK/202.pdf |
||
| + | Д.Кузнецов. Суперфункции. [[Lambert Academic Publishing]], 2014. |
||
| + | </ref>. |
||
| − | [[ |
+ | This plot is used also as Fig.8.5 at page 95 of book «[[Superfunctions]]»<ref> |
| + | https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas,algorithms,tables,graphics - 2020/7/28 |
||
| + | </ref><ref>https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas, algorithms, tables, graphics. Publisher: [[Lambert Academic Publishing]]. |
||
| + | </ref> |
||
| + | <br> |
||
| + | in order to compare these functions, [[SuFac]] and [[Factorial]]. |
||
| + | |||
| + | ==[[C++]] generator of curves== |
||
| + | Files [[ado.cin]], [[fac.cin]], [[superfac.cin]] should be loaded in order to compile the code below |
||
| + | |||
| + | <pre> |
||
| + | #include<math.h> |
||
| + | #include<stdio.h> |
||
| + | #include<stdlib.h> |
||
| + | #define DB double |
||
| + | #define DO(x,y) for(x=0;x<y;x++) |
||
| + | //using namespace std; |
||
| + | #include <complex> |
||
| + | typedef std::complex<double> z_type; |
||
| + | #define Re(x) x.real() |
||
| + | #define Im(x) x.imag() |
||
| + | #define I z_type(0.,1.) |
||
| + | #include "ado.cin" |
||
| + | #include "fac.cin" |
||
| + | #include "sufac.cin" |
||
| + | // #include "superfactorial.cin" |
||
| + | //#include "doya.cin" |
||
| + | //DB Shoko(DB x) { return log(1.+exp(x)*(M_E-1.)); } |
||
| + | |||
| + | int main(){ int m,n; double x,y; FILE *o; |
||
| + | //o=fopen("SuperFacPlot.eps","w"); ado(o,802,1010); |
||
| + | o=fopen("superfacplo.eps","w"); ado(o,802,1010); |
||
| + | fprintf(o,"401 1 translate 100 100 scale\n"); |
||
| + | #define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y); |
||
| + | #define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y); |
||
| + | for(m=-4;m<5;m++) {M(m,0)L(m,10)} |
||
| + | for(m=0;m<11;m++) {M(-4,m)L(4,m)} |
||
| + | fprintf(o,"2 setlinecap .01 W S\n 1 setlinecap 1 setlinejoin\n"); |
||
| + | for(m=0;m<42;m++){x=-.5+.1*m; y=Re(fac(x)); if(m==0)M(x,y) else L(x,y);} fprintf(o,".04 W .7 0 0 RGB S\n"); |
||
| + | for(m=0;m<54;m++){x=-4+.1*m; y=Re(superfac(x));if(m==0)M(x,y) else L(x,y);} fprintf(o,".04 W 0 0 .7 RGB S\n"); |
||
| + | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
| + | system("epstopdf superfacplo.eps"); |
||
| + | system( "open superfacplo.pdf"); |
||
| + | getchar(); system("killall Preview");//for mac |
||
| + | } |
||
| + | </pre> |
||
| + | |||
| + | ==[[Latex]] generator of labels== |
||
| + | |||
| + | <pre> |
||
| + | \documentclass[12pt]{article} |
||
| + | \paperwidth 808pt |
||
| + | \paperheight 1056pt |
||
| + | \textwidth 1800pt |
||
| + | \textheight 1800pt |
||
| + | \topmargin -108pt |
||
| + | \oddsidemargin -72pt |
||
| + | \parindent 0pt |
||
| + | \pagestyle{empty} |
||
| + | \usepackage {graphics} |
||
| + | \usepackage{rotating} |
||
| + | \newcommand \rot {\begin{rotate}} |
||
| + | \newcommand \ero {\end{rotate}} |
||
| + | \newcommand \ing {\includegraphics} |
||
| + | \newcommand \sx {\scalebox} |
||
| + | \begin{document} |
||
| + | \begin{picture}(602,1010) |
||
| + | %\put(0,0){\includegraphics{SuperFacPlot}} |
||
| + | \put(0,0){\includegraphics{superfacplo}} |
||
| + | \put(372,978){\sx{4.5}{$y$}} |
||
| + | \put(372,890){\sx{4.5}{$9$}} |
||
| + | \put(372,790){\sx{4.5}{$8$}} |
||
| + | \put(372,690){\sx{4.5}{$7$}} |
||
| + | \put(372,590){\sx{4.5}{$6$}} |
||
| + | \put(372,490){\sx{4.5}{$5$}} |
||
| + | \put(372,390){\sx{4.5}{$4$}} |
||
| + | \put(372,290){\sx{4.5}{$3$}} |
||
| + | \put(372,190){\sx{4.5}{$2$}} |
||
| + | \put(372,90){\sx{4.5}{$1$}} |
||
| + | \put( 066,-42){\sx{4.5}{$-\!3$}} |
||
| + | \put(166,-42){\sx{4.5}{$-\!2$}} |
||
| + | \put(266,-42){\sx{4.5}{$-\!1$}} |
||
| + | \put(391,-42){\sx{4.5}{$0$}} |
||
| + | \put(491,-42){\sx{4.5}{$1$}} |
||
| + | \put(591,-42){\sx{4.5}{$2$}} |
||
| + | \put(691,-42){\sx{4.5}{$3$}} |
||
| + | \put(777,-42){\sx{4.5}{$x$}} |
||
| + | %\put(532,440){\sx{5}{\rot{83}$y\!=\!\mathrm{SuperFactorial}(x)$\ero}} |
||
| + | \put(532,440){\sx{5}{\rot{83}$y\!=\!\mathrm{SuFac}(x)$\ero}} |
||
| + | %\put(660,450){\sx{4}{\rot{83}$y\!=\!\mathrm{Factorial}(x)$\ero}} % |
||
| + | \put(740,500){\sx{5}{\rot{83}$y\!=\!\mathrm{Factorial}(x)$\ero}} |
||
| + | \end{picture} |
||
| + | \end{document} |
||
| + | </pre> |
||
| + | |||
| + | ==References== |
||
| + | {{ref}} |
||
| + | |||
| + | {{fer}} |
||
| + | ==Keywords== |
||
| + | «[[]]», |
||
| + | «[[Factorial]]», |
||
| + | «[[Regular iteration]]», |
||
| + | «[[SuFac]]», |
||
| + | «[[SuperFactorial]]», |
||
| + | «[[Superfactorial]]», |
||
| + | «[[Superfunction]]», |
||
| + | «[[Superfunctions]]», |
||
| + | «[[Table of superfunctions]]», |
||
| + | «[[Transfer equation]]», |
||
| + | «[[Transfer function]]», |
||
| + | |||
| + | [[Category:Book]] |
||
| + | [[Category:BookPlot]] |
||
| + | [[Category:C++]] |
||
| + | [[Category:Explicit plot]] |
||
[[Category:Factorial]] |
[[Category:Factorial]] |
||
| − | [[Category: |
+ | [[Category:Latex]] |
| + | [[Category:SuFac]] |
||
| + | [[Category:Superfunction]] |
||
| + | [[Category:Superfunctions]] |
||
| + | [[Category:Transfer function]] |
||
Revision as of 15:19, 22 August 2025
Explicit plot of functions Factorial and SuFac:
\(y\!=\!x! ~\) and \(~y\!=\!\mathrm{SuFac}(x) ~\) versus \(x\).
This is adaptation of Figure 8.4 from the Russian book Superfunctions (Суперфункции, in Russian) [1].
This plot is used also as Fig.8.5 at page 95 of book «Superfunctions»[2][3]
in order to compare these functions, SuFac and Factorial.
C++ generator of curves
Files ado.cin, fac.cin, superfac.cin should be loaded in order to compile the code below
#include<math.h>
#include<stdio.h>
#include<stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
//using namespace std;
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "ado.cin"
#include "fac.cin"
#include "sufac.cin"
// #include "superfactorial.cin"
//#include "doya.cin"
//DB Shoko(DB x) { return log(1.+exp(x)*(M_E-1.)); }
int main(){ int m,n; double x,y; FILE *o;
//o=fopen("SuperFacPlot.eps","w"); ado(o,802,1010);
o=fopen("superfacplo.eps","w"); ado(o,802,1010);
fprintf(o,"401 1 translate 100 100 scale\n");
#define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y);
for(m=-4;m<5;m++) {M(m,0)L(m,10)}
for(m=0;m<11;m++) {M(-4,m)L(4,m)}
fprintf(o,"2 setlinecap .01 W S\n 1 setlinecap 1 setlinejoin\n");
for(m=0;m<42;m++){x=-.5+.1*m; y=Re(fac(x)); if(m==0)M(x,y) else L(x,y);} fprintf(o,".04 W .7 0 0 RGB S\n");
for(m=0;m<54;m++){x=-4+.1*m; y=Re(superfac(x));if(m==0)M(x,y) else L(x,y);} fprintf(o,".04 W 0 0 .7 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf superfacplo.eps");
system( "open superfacplo.pdf");
getchar(); system("killall Preview");//for mac
}
Latex generator of labels
\documentclass[12pt]{article}
\paperwidth 808pt
\paperheight 1056pt
\textwidth 1800pt
\textheight 1800pt
\topmargin -108pt
\oddsidemargin -72pt
\parindent 0pt
\pagestyle{empty}
\usepackage {graphics}
\usepackage{rotating}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\newcommand \ing {\includegraphics}
\newcommand \sx {\scalebox}
\begin{document}
\begin{picture}(602,1010)
%\put(0,0){\includegraphics{SuperFacPlot}}
\put(0,0){\includegraphics{superfacplo}}
\put(372,978){\sx{4.5}{$y$}}
\put(372,890){\sx{4.5}{$9$}}
\put(372,790){\sx{4.5}{$8$}}
\put(372,690){\sx{4.5}{$7$}}
\put(372,590){\sx{4.5}{$6$}}
\put(372,490){\sx{4.5}{$5$}}
\put(372,390){\sx{4.5}{$4$}}
\put(372,290){\sx{4.5}{$3$}}
\put(372,190){\sx{4.5}{$2$}}
\put(372,90){\sx{4.5}{$1$}}
\put( 066,-42){\sx{4.5}{$-\!3$}}
\put(166,-42){\sx{4.5}{$-\!2$}}
\put(266,-42){\sx{4.5}{$-\!1$}}
\put(391,-42){\sx{4.5}{$0$}}
\put(491,-42){\sx{4.5}{$1$}}
\put(591,-42){\sx{4.5}{$2$}}
\put(691,-42){\sx{4.5}{$3$}}
\put(777,-42){\sx{4.5}{$x$}}
%\put(532,440){\sx{5}{\rot{83}$y\!=\!\mathrm{SuperFactorial}(x)$\ero}}
\put(532,440){\sx{5}{\rot{83}$y\!=\!\mathrm{SuFac}(x)$\ero}}
%\put(660,450){\sx{4}{\rot{83}$y\!=\!\mathrm{Factorial}(x)$\ero}} %
\put(740,500){\sx{5}{\rot{83}$y\!=\!\mathrm{Factorial}(x)$\ero}}
\end{picture}
\end{document}
References
- ↑ http://mizugadro.mydns.jp/BOOK/202.pdf Д.Кузнецов. Суперфункции. Lambert Academic Publishing, 2014.
- ↑ https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas,algorithms,tables,graphics - 2020/7/28
- ↑ https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas, algorithms, tables, graphics. Publisher: Lambert Academic Publishing.
Keywords
«[[]]», «Factorial», «Regular iteration», «SuFac», «SuperFactorial», «Superfactorial», «Superfunction», «Superfunctions», «Table of superfunctions», «Transfer equation», «Transfer function»,
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 17:50, 20 June 2013 | 538 × 1,050 (34 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following 2 pages use this file: