File:Qexpmap.jpg

From TORI
Revision as of 19:20, 17 August 2025 by T (talk | contribs) (refs)
Jump to navigation Jump to search

Original file(682 × 706 pixels, file size: 152 KB, MIME type: image/jpeg)


Complex map of function «square root of exponential», \( \varphi=\sqrt{\exp} \), from article «Superfunctions and square root of factorial» [1]. In the article, the square root of exponential (shown in the map) is compared to the square root of factorial.

Function \( \varphi(z) = \mathrm{tet}(1/2+\mathrm{ate}(z)) = \exp^{1/2}(z)\)

appears as solution of equation

\( \varphi(\varphi(z))=\exp(z) \)

Existence of this function is shown in 1950 by Hellmuth Kneser [2].

Natural Tetration \(\mathrm{tet}\) and Arctetration \(\mathrm{ate}\!=\!\mathrm{tet}^{-1}\) are implemented in 2009-2010 [3][4] and described in book «Superfunctions» [5][6] (chapters 14 and 15), similar map appears in the left part of figure 15.5 at page 211 for iterate \(n\!=\!0.5\ \).

References

  1. https://link.springer.com/article/10.3103/S0027134910010029
    https://mizugadro.mydns.jp/PAPERS/2010superfae.pdf (English)
    https://mizugadro.mydns.jp/PAPERS/2010superfar.pdf (Russian)
    D.Kouznetsov, H.Trappmann. Superfunctions and square root of factorial. Moscow University Physics Bulletin, 2010, v.65, No.1, p.6-12. (Russian version: p.8-14)
  2. http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002175851&physid=phys63#navi Hellmuth Kneser. Reelle analytische Lösungen der Gleichung \( φ(φ(x))=e^x \) und verwandter Funktionalgleichungen. Journal für die reine und angewandte Mathematik / Zeitschriftenband (1950) / Artikel / 56 - 67
  3. http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html
    https://mizugadro.mydns.jp/PAPERS/2009analuxpRepri.pdf D.Kouznetsov. Analytic solution of F(z+1)=exp(F(z)) in complex z-plane. Mathematics of Computation, v.78 (2009), 1647-1670. Preprint: 2009analuxpRepri.pdf
  4. http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html
    https://mizugadro.mydns.jp/PAPERS/2009analuxpRepri.pdf D.Kouznetsov. Analytic solution of F(z+1)=exp(F(z)) in complex z-plane. Mathematics of Computation, v.78 (2009), 1647-1670.
  5. https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas,algorithms,tables,graphics ペーパーバック – 2020/7/28
  6. https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas, algorithms, tables, graphics. Publisher: Lambert Academic Publishing.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current21:48, 30 November 2019Thumbnail for version as of 21:48, 30 November 2019682 × 706 (152 KB)T (talk | contribs)

The following 3 pages use this file:

Metadata